stem cells

Photo by arcyto

Stacey Khoury felt more fatigued and out of breath than she was used to from just walking up the steps to her job in retail jewelry sales in Nashville, Tennessee. By the time she got home, she was more exhausted than usual, too.

"I just thought I was working too hard and needed more exercise," recalls the native Nashvillian about those days in December 2010. "All of the usual excuses you make when you're not feeling 100%."

Keep Reading Keep Reading
Christopher Johnston
Christopher Johnston has published more than 3,500 articles in publications including American Theatre, Christian Science Monitor, History Magazine, and Scientific American. His book, Shattering Silences: Strategies to Prevent Sexual Assault, Heal Survivors, and Bring Assailants to Justice (Skyhorse) was published in May 2018. He is a member of the Board of the American Society of Journalists and Authors.

The Northern white rhinoceros Nola, the last one in the U.S. at that time in 2015, pictured here with author Jeanne Loring and Oliver Ryder (in truck), with a film crew and keepers in the San Diego Zoo's savanna. Nola sadly passed away that year.

Kel O'Neill, Jongsma + O'Neill Documentary filmmaking studio

I am a stem cell scientist. In my day job I work on developing ways to use stem cells to treat neurological disease – human disease. This is the story about how I became part of a group dedicated to rescuing the northern white rhinoceros from extinction.

The earth is now in an era that is called the "sixth mass extinction." The first extinction, 400 million years ago, put an end to 86 percent of the existing species, including most of the trilobites. When the earth grew hotter, dustier, or darker, it lost fish, amphibians, reptiles, plants, dinosaurs, mammals and birds. Each extinction event wiped out 80 to 90 percent of the life on the planet at the time. The first 5 mass extinctions were caused by natural disasters: volcanoes, fires, a meteor. But humans can take credit for the 6th.

Keep Reading Keep Reading
Jeanne Loring
Jeanne Loring is an American stem cell biologist, developmental neurobiologist, and geneticist. She is the director of the Center for Regenerative Medicine and professor at the Scripps Research Institute in La Jolla, California.
Get our top stories twice a month
Follow us on

NIH researchers in Kapil Bharti's lab work toward the development of induced pluripotent stem cells to treat dry age-related macular degeneration.

(Screenshot from video:

Of all the infirmities of old age, failing sight is among the cruelest. It can mean the end not only of independence, but of a whole spectrum of joys—from gazing at a sunset or a grandchild's face to reading a novel or watching TV.

The Phase 1 trial will likely run through 2022, followed by a larger Phase 2 trial that could last another two or three years.

The leading cause of vision loss in people over 55 is age-related macular degeneration, or AMD, which afflicts an estimated 11 million Americans. As photoreceptors in the macula (the central part of the retina) die off, patients experience increasingly severe blurring, dimming, distortions, and blank spots in one or both eyes.

The disorder comes in two varieties, "wet" and "dry," both driven by a complex interaction of genetic, environmental, and lifestyle factors. It begins when deposits of cellular debris accumulate beneath the retinal pigment epithelium (RPE)—a layer of cells that nourish and remove waste products from the photoreceptors above them. In wet AMD, this process triggers the growth of abnormal, leaky blood vessels that damage the photoreceptors. In dry AMD, which accounts for 80 to 90 percent of cases, RPE cells atrophy, causing photoreceptors to wither away. Wet AMD can be controlled in about a quarter of patients, usually by injections of medication into the eye. For dry AMD, no effective remedy exists.

Stem Cells: Promise and Perils

Over the past decade, stem cell therapy has been widely touted as a potential treatment for AMD. The idea is to augment a patient's ailing RPE cells with healthy ones grown in the lab. A few small clinical trials have shown promising results. In a study published in 2018, for example, a University of Southern California team cultivated RPE tissue from embryonic stem cells on a plastic matrix and transplanted it into the retinas of four patients with advanced dry AMD. Because the trial was designed to test safety rather than efficacy, lead researcher Amir Kashani told a reporter, "we didn't expect that replacing RPE cells would return a significant amount of vision." Yet acuity improved substantially in one recipient, and the others regained their lost ability to focus on an object.

Therapies based on embryonic stem cells, however, have two serious drawbacks: Using fetal cell lines raises ethical issues, and such treatments require the patient to take immunosuppressant drugs (which can cause health problems of their own) to prevent rejection. That's why some experts favor a different approach—one based on induced pluripotent stem cells (iPSCs). Such cells, first produced in 2006, are made by returning adult cells to an undifferentiated state, and then using chemicals to reprogram them as desired. Treatments grown from a patient's own tissues could sidestep both hurdles associated with embryonic cells.

At least hypothetically. Today, the only stem cell therapies approved by the U.S. Food and Drug Administration (FDA) are umbilical cord-derived products for various blood and immune disorders. Although scientists are probing the use of embryonic stem cells or iPSCs for conditions ranging from diabetes to Parkinson's disease, such applications remain experimental—or fraudulent, as a growing number of patients treated at unlicensed "stem cell clinics" have painfully learned. (Some have gone blind after receiving bogus AMD therapies at those facilities.)

Last December, researchers at the National Eye Institute in Bethesda, Maryland, began enrolling patients with dry AMD in the country's first clinical trial using tissue grown from the patients' own stem cells. Led by biologist Kapil Bharti, the team intends to implant custom-made RPE cells in 12 recipients. If the effort pans out, it could someday save the sight of countless oldsters.

That, however, is what's technically referred to as a very big "if."

The First Steps

Bharti's trial is not the first in the world to use patient-derived iPSCs to treat age-related macular degeneration. In 2013, Japanese researchers implanted such cells into the eyes of a 77-year-old woman with wet AMD; after a year, her vision had stabilized, and she no longer needed injections to keep abnormal blood vessels from forming. A second patient was scheduled for surgery—but the procedure was canceled after the lab-grown RPE cells showed signs of worrisome mutations. That incident illustrates one potential problem with using stem cells: Under some circumstances, the cells or the tissue they form could turn cancerous.

"The knowledge and expertise we're gaining can be applied to many other iPSC-based therapies."

Bharti and his colleagues have gone to great lengths to avoid such outcomes. "Our process is significantly different," he told me in a phone interview. His team begins with patients' blood stem cells, which appear to be more genomically stable than the skin cells that the Japanese group used. After converting the blood cells to RPE stem cells, his team cultures them in a single layer on a biodegradable scaffold, which helps them grow in an orderly manner. "We think this material gives us a big advantage," Bharti says. The team uses a machine-learning algorithm to identify optimal cell structure and ensure quality control.

It takes about six months for a patch of iPSCs to become viable RPE cells. When they're ready, a surgeon uses a specially-designed tool to insert the tiny structure into the retina. Within days, the scaffold melts away, enabling the transplanted RPE cells to integrate fully into their new environment. Bharti's team initially tested their method on rats and pigs with eye damage mimicking AMD. The study, published in January 2019 in Science Translational Medicine, found that at ten weeks, the implanted RPE cells continued to function normally and protected neighboring photoreceptors from further deterioration. No trace of mutagenesis appeared.

Encouraged by these results, Bharti began recruiting human subjects. The Phase 1 trial will likely run through 2022, followed by a larger Phase 2 trial that could last another two or three years. FDA approval would require an even larger Phase 3 trial, with a decision expected sometime between 2025 and 2028—that is, if nothing untoward happens before then. One unknown (among many) is whether implanted cells can thrive indefinitely under the biochemically hostile conditions of an eye with AMD.

"Most people don't have a sense of just how long it takes to get something like this to work, and how many failures—even disasters—there are along the way," says Marco Zarbin, professor and chair of Ophthalmology and visual science at Rutgers New Jersey Medical School and co-editor of the book Cell-Based Therapy for Degenerative Retinal Diseases. "The first kidney transplant was done in 1933. But the first successful kidney transplant was in 1954. That gives you a sense of the time frame. We're really taking the very first steps in this direction."

Looking Ahead

Even if Bharti's method proves safe and effective, there's the question of its practicality. "My sense is that using induced pluripotent stem cells to treat the patient from whom they're derived is a very expensive undertaking," Zarbin observes. "So you'd have to have a very dramatic clinical benefit to justify that cost."

Bharti concedes that the price of iPSC therapy is likely to be high, given that each "dose" is formulated for a single individual, requires months to manufacture, and must be administered via microsurgery. Still, he expects economies of scale and production to emerge with time. "We're working on automating several steps of the process," he explains. "When that kicks in, a technician will be able to make products for 10 or 20 people at once, so the cost will drop proportionately."

Meanwhile, other researchers are pressing ahead with therapies for AMD using embryonic stem cells, which could be mass-produced to treat any patient who needs them. But should that approach eventually win FDA approval, Bharti believes there will still be room for a technique that requires neither fetal cell lines nor immunosuppression.

And not only for eye ailments. "The knowledge and expertise we're gaining can be applied to many other iPSC-based therapies," says the scientist, who is currently consulting with several companies that are developing such treatments. "I'm hopeful that we can leverage these approaches for a wide range of applications, whether it's for vision or across the body."

NEI launches iPS cell therapy trial for dry AMD

Kenneth Miller
Kenneth Miller is a freelance writer based in Los Angeles. He is a contributing editor at Discover, and has reported from four continents for publications including Time, Life, Rolling Stone, Mother Jones, and Aeon. His honors include The ASJA Award for Best Science Writing and the June Roth Memorial Award for Medical Writing. Visit his website at

The beauty industry heavily hypes the nascent promise of stem cells for rejuvenation.

(© canbedone/Adobe)

The beauty market abounds with high-end creams and serums that claim the use of stem cells to rejuvenate aging skin.

Selling on the internet and at department stores like Nordstrom, these products promise "breakthrough" applications to plump, smooth, and "reverse visible signs of aging," and at least one product offers to create a "regenerative firming serum, moisturizer, and eye cream" from customers' own stem cells – for a whopping $1200.

The beauty industry is heavily hyping glimmers of the nascent field of stem cell therapy.

Steeped in clinical-sounding terms like "proteins and peptides from pluripotent stem cells," the marketing of these products evokes a dramatic restoration of youthfulness based on cutting-edge science. But the beauty industry is heavily hyping glimmers of the nascent field of stem cell therapy. So what is real and what's not? And is there in fact a way to harness the potential of stem cells in the service of beauty?

Plant vs. Human Stem Cells

Stem cells do indeed have tremendous promise for treating a wide range of diseases and conditions. The cells come from early-stage embryos or, more commonly, from umbilical cord blood or our own bodies. Embryonic stem cells are considered the body's "master" cells because they can develop into any of our several hundred cell types. Adult stem cells, on the other hand, reside in mature tissues and organs like the brain, bone marrow, and skin, and their versatility is more limited. As an internal repair system for many tissue types, they replenish sick, injured, and worn-out cells.

Nowadays, with some sophisticated chemical coaxing, adult stem cells can be returned to an embryonic-like blank state, with the ability to become any cell type that the body might need.

Beauty product manufacturers convey in their advertising that the rejuvenating power of these cells could hold the key to the fountain of youth. But there's something the manufacturers don't always tell you: their products do not typically use human stem cells.

"The whole concept of stem cells is intriguing to the public," says Tamara Griffiths, a consultant dermatologist for the British Skin Foundation. "But what these products contain is plant stem cells and, more commonly, chemicals that have been derived from plant stem cells."

The plant stem cells are cultured in the lab with special media to get them to produce signaling proteins and peptides, like cytokines and chemokines. These have been shown to be good for reducing inflammation and promoting healthy cell functioning, even if derived from plants. However, according to Griffiths, there are so many active ingredients in these products that it's hard to say just what role each one of them plays. We do know that their ability to replenish human stem cells is extremely limited, and the effects of plant stem cells on human cells are unproven.

"...any cosmetic that is advertised to be anti-aging due to plant stem cells at this time is about as effective as all the skin creams without stem cells."

Whether products containing plant cell-derived ingredients work better than conventional skin products is unknown because these products are not regulated by the U.S. Food and Drug Administration and may rest on dubious, even more or less nonexistent, research. Cosmetics companies have conducted most of the research and the exact formulas they devise are considered proprietary information. They have no incentive to publish their research findings, and they don't have to meet standards imposed by the FDA unless they start using human cells in their products.

"There are biological limits to what you can do with plant cells in the first place," says Griffiths. "No plant stem cell is going to morph into a human skin cell no matter what magic medium you immerse it in. Nor is a plant cell likely to stimulate the production of human stem cells if applied to the skin."

According to Sarah Baucus, a cell biologist, for any type of stem cell to be of any use whatsoever, the cells must be alive. The processing needed to incorporate living cells into any type of cream or serum would inevitably kill them, rendering them useless. The splashy marketing of these products suggests that results may be drastic, but none of these creams is likely to produce the kind of rejuvenating effect that would be on par with a facelift or several other surgical or dermatological procedures.

"Plant stem cell therapy needs to move in the right direction to implement its inherent potential in skin care," researchers wrote in a 2017 paper in the journal Future Science OA. "This might happen in the next 20 years but any cosmetic that is advertised to be anti-aging due to plant stem cells at this time is about as effective as all the skin creams without stem cells."

From Beauty Counter to Doctor's Clinic

Where do you turn if you still want to harness the power of stem cells to reinvigorate the skin? Is there a legitimate treatment using human cells? The answer is possibly, but for that you have to switch from the Nordstrom cosmetics counter to a clinic with a lab, where plastic surgeons work with specialists who culture and manipulate living cells.

Plastic surgeons are experts in wound healing, a process in which stem cells play a prominent role. Doctors have long used the technique of taking fat from the body and injecting it into hollowed-out or depressed areas of the face to fill in injuries, correct wrinkles, and improve the face's curvature. Lipotransfer, or the harvesting of body fat and injecting it into the face, has been around for many years in traditional plastic surgery clinics. In recent years, some plastic surgeons have started to cull stem cells from fat. One procedure that does just that is called cell-assisted lipotransfer, or CAL.

In CAL, adipose tissue, or fat, is harvested by liposuction, usually from the lower abdomen. Fat contains stem cells that can differentiate into several cell types, including skin, muscle, cartilage, and bone. Fat tissue has an especially stem cell-rich layer. These cells are then mixed with some regular fat, making in effect a very stem cell-rich fat solution, right in the doctor's office. The process of manipulating the fat cells takes about 90 to 110 minutes, and then the solution is ready to be injected into the skin, to fill in the lips, the cheeks, and the nasolabial folds, or the deep folds around the nose and mouth.

Unlike regular fat, which is often injected into the face, some experts claim that the cell-enriched fat has better, longer-lasting results. The tissue graft grows its own blood vessels, an advantage that may lead to a more long-lasting graft – though the research is mixed, with some studies showing they do and other studies showing the complete opposite.

For almost all stem cell products on the market today in the U.S., it is not yet known whether they are safe or effective, despite how they are marketed.

One of the pioneers in CAL, a plastic surgeon in Brazil named Dr. Aris Sterodimas, says that the stem cells secrete growth factors that rejuvenate the skin -- like the plant stem cells that are used in topical creams and serums. Except that these cells are human stem cells and hence have inherently more potential in the human body.

Note that CAL doesn't actually result in large numbers of fresh, new replacement cells, as might be imagined. It's simply fat tissue treated to make it richer in stem cells, to have more of the growth-inducing proteins and peptides delivered to the dermis layer of the skin.

Sterodimas works alongside a tissue engineer to provide CAL in his clinic. He uses it as a way to rebuild soft tissues in people disfigured by accidents or diseases, or who are suffering the after-effects of radiation treatments for cancer.

Plastic surgeons get plenty of these patients. But how widespread is CAL for beauty purposes? Sterodimas says that he regularly performs the procedure for Brazilians, and it's widely available in Europe and Japan. In the U.S., the procedure hasn't taken off because there is no FDA approval for the various methods used by different doctors and clinics. A few major academic centers in the U.S. offer the treatment on a clinical trials basis and there are several trials ongoing.

But there is a downside to all lipotransfers: the transplanted fat will eventually be absorbed by the body. Even the cell-enriched fat has a limited lifespan before reabsorption. That means if you like the cosmetic results of CAL, you'll have to repeat the treatment about every two years to maintain the plumping, firming, and smoothing effects on the skin. The results of CAL are "superior to the results of laser treatments and other plastic surgery interventions, though the effect is not as dramatic as a facelift," says Sterodimas.

Buyer Beware

For almost all stem cell products on the market today in the U.S., it is not yet known whether they are safe or effective, despite how they are marketed. There are around 700 clinics in the U.S. offering stem cell treatments and up to 20,000 people have received these therapies. However, the only FDA-approved stem cell treatments use cells from bone marrow or cord blood to treat cancers of the blood and bone marrow. Safety concerns have prompted the FDA to announce increased oversight of stem cell clinics.

As for CAL, most of the clinical trials so far have been focused on using it for breast reconstruction after mastectomy, and results are mixed. Experts warn that the procedure has yet to be proven safe as well as effective. It's important to remember that this newborn science is in the early stages of research.

One question that has also not been definitively settled is whether the transplanted stem cells may give rise to tumors — a risk that is ever-present any time stem cells are used. More research is required to assess the long-term safety and effectiveness of these treatments.

Given the lack of uniform industry standards, one can easily end up at a clinic that overpromises what it can deliver.

In the journal Plastic Reconstruction Surgery in 2014, Adrian McArdle and a team of Stanford University plastic surgeons examined the common claims of CAL's "stem cell facelifts" being offered by clinics across the world. McArdle and his team write: "…the marketplace is characterized by direct-to-consumer corporate medicine strategies that are characterized by unsubstantiated, and sometimes fraudulent claims, that put our patients at risk." Given the lack of uniform industry standards, one can easily end up at a clinic that overpromises what it can deliver.

But according to McArdle, further research on CAL, including clinical trials, is proceeding apace. It's possible that as more research on the potential of stem cells accrues, many of the technical hurdles will be crossed.

If you decide to try CAL in a research or clinical setting, be forewarned. You will be taking part in a young science, with many unknown questions. However, the next time someone offers to sell you stem cells in a jar, you'll know what you're paying for.

Eve Herold
Eve Herold is a science writer specializing in issues at the intersection of science and society. She has written and spoken extensively about stem cell research and regenerative medicine and the social and bioethical aspects of leading-edge medicine. Her 2007 book, Stem Cell Wars, was awarded a Commendation in Popular Medicine by the British Medical Association. Her 2016 book, Beyond Human, has been nominated for the Kirkus Prize in Nonfiction, and a forthcoming book, Robots and the Women Who Love Them, will be released in 2019.

The 2018 Stem Cell Action Awards, honoring recipients for advocacy, leadership, and inspiration, presented by the Regenerative Medicine Foundation.

(Courtesy RMF)

Last week in Miami, more than 450 researchers, physicians, lawyers, ethicists, and executives gathered from far-flung corners of the globe to share the latest updates in stem cell research and regenerative medicine. Sure, a science conference might not seem as glamorous as a celebrity-filled Madison Square Garden, but it's the place to be if you care about breakthroughs that could give you a longer and healthier life. Here are our top ten takeaways about what's hot and what's happening worldwide:

"The places you least expect will turn up to produce some really extraordinary things."

1) The future of stem cell treatment may involve the creation of a universal cell line that is genetically modified so every patient's immune system will accept it.

One of the leading scientists at the convention, Japanese stem cell pioneer Dr. Norio Nakatsuji, dubbed this quest a "very hot topic" right now. Being able to produce one safe cell line for everyone would be much cheaper and faster than having to create and grow patient-specific cells. "It is theoretically possible to genetically modify the lines so everyone can accept them," said Nakatsuji. A Seattle-based biotech company aptly named Universal Cells is leading the way in this promising area.

2) Japan was the world leader in stem cell research 10 years ago, but has since fallen behind the United States for reasons that some researchers find frustrating.

Japan is not a particularly religious society, so their culture does not object on principle to using donated human embryos for the creation of stem cells, and federal money can fund such research, unlike in the U.S. But the irony, according to Nakatsuji, is that the regulations for researchers are still very cumbersome. "We need to clear many probably unnecessary steps," he said. For example, before starting work in the field, new graduate students need special training and ethics lectures, and must be cleared by a committee; the process could take six months before an experiment can start, whereas in a country like Britain, scientists can immediately begin.

Also: back in 2006, a Japanese researcher who later won the Nobel Prize managed to reprogram 4 genes in adult cells and essentially turn back time, reversing the cells back to an embryonic state. The implications of this breakthrough were enormous, because destroying an embryo was no longer required to generate blank cells with unlimited potential—and these cells could now be created directly from a patient.

But then "a very unfortunate situation" happened in Japan, says Nakatsuji. There was a fever for these induced pluripotent (iPS) cells, and many Japanese researchers thought embryonic stem cell research was no longer important.

"This is a misconception," Nakatsuji lamented. "You do need both cell types." Embryonic stem cells, unlike their artificially made alternatives, are still safer and more reliable. A symbolic example, he said, is that groups in the U.S. and Europe are starting trials for Parkinson's disease that require dopamine-secreting neurons from stem cells. The researchers could have chosen iPS cells, but went with embryonic stem cells.

The main advantage now of iPS cells, Nakatsuji said, is not for therapeutic purposes, but for drug discovery and creating models of disease based on specific patient profiles.

Dr. Norio Nakatsuji receiving an award for international leadership from Bernard Siegel, the founder and director of the Regenerative Medicine Foundation.

3) In China, rampant stem cell tourism in 2009 led to disaster and a total government shutdown, from which the research field is only recently starting to recover.

Stem cell therapy in China "used to be totally unethical but then took a shock and is still recovering from that shock," said Dr. Wenchun Qu, a physician-researcher at the Mayo Clinic. Scam clinics profited off unapproved and unproven treatments which killed some patients until the total ban set in. Now, the research field is slowly coming back on board under strict regulation; there were only 35 clinical trial with stem cells in 2016, whereas in the U.S, there were more than 2000.

"A lack of public trust and deception is the number one factor" in China's falling behind, said Dr. Yen-Michael Hsu of Weill Cornell. "China is catching up trying to rebuild trust with the taxpayers."

As of last November, 102 designated institutions in China can conduct stem cell research only--not offer commercialized treatments. Bottom line: China is advancing fast in basic science and even leading in some areas, yet is trailing other countries in translational studies and clinical practice.

4) The Bahamas is emerging as a hub of legitimate research that is attracting innovative new trials.

A regulatory framework and National Stem Cell Ethics Committee were established around 2013, and since then, clinical research in the Bahamas has begun; the focus is on safety and efficacy, with standards high enough to satisfy the FDA, but also streamlined enough to allow for trials to proceed faster than they might in other countries.

One U.S.-based company, Advanced Regen Medical Technologies, is pursuing a proprietary cell culture that rejuvenates old cells by exposing them to young donor cells, with the goal of extending healthy living. On May 24th, 2017, the company presented to the National Stem Cell Ethics Committee, and on December 15th, they treated their first patient.

"Here's an indication that would be frankly impossible to get through the FDA and certainly not without many years of pain," said Marc Penn, a leader of the company's executive team. "We were able to get through the National Stem Cell Ethics Committee with all of us feeling good about the level of rigor within a seven-to-eight month span."

Desiree Cox, the chairwoman of the Committee, stressed the selectiveness and rigor with which the Bahamas is approaching new trial applications. Of 20 proposed stem cell trials, they have approved only four.

"We're interested in first-in-man studies, things that are breaking the boundaries, going beyond what is already done elsewhere, linking to predictive analytics," she said. "The places you least expect will turn up to produce some really extraordinary things."

Another active clinical trial there is a phase 1 study for Aging Frailty run by a Miami-based start-up called Longeveron. "Our experience is it comes as a huge relief to many people to have the opportunity to go to such a program rather than wait for a drug to be approved in the U.S.," said Dr. Joshua Hare, the director of the Interdisciplinary Stem Cell Institute at the University of Miami and the co-founder and Chief Science Officer at Longeveron.

"The challenge right now is the effective translation and development of viable stem-cell based therapies."

5) Researchers are working on building an artificial heart with stem cells, but technology is not the only hurdle.

A group at the Texas Heart Institute in Houston is experimenting with this strategy: stripping a real heart organ of its cells, then repopulating it with blood-forming stem cells, and implanting it. In cows, this approach has worked successfully. But one problem, said Dr. Doris Taylor, the director of Regenerative Medicine Research at the Institute, is educating regulators, since this kind of treatment is not a drug and not a device.

That said, when will we see someone order a heart off the shelf?

"I think in the next two years," she said, "you will see exciting things happening at least at the level of congenital heart disease, if not adult hearts."

6) Cost is a major barrier to regenerative medicine's success.

"It's not about whether you can get enough of the cells you need, it's about whether you can get them for less than one million dollars," Taylor said wryly.

Cell therapies intended for patients must be manufactured in a special facility to generate the quantity necessary for treatment. Some experts expressed concerned that these bio-manufacturing facilities are like "the Wild West" right now because there is no standard for pricing.

Some companies are "getting away with murder," said Dr. Camillo Ricordi, director of the Diabetes Research Institute. "This doesn't happen in most of the rest of the world."

7) Media hype has caused the premature (and potentially dangerous) commercialization of unproven stem cell therapies.

There are now over 570 such clinics operating in the U.S., with hot spots in Florida and California, which offer up stem cells for everything from sports medicine and vitamins to beauty products and pet health.

In fact, according to the FDA, the only stem cell-based products currently approved for use consist of blood-forming stem cells derived from cord blood. Everything else, for now, is still experimental.

While plenty of legitimate research is moving ahead in clinical trials, consumers may be confused by the plethora of scam clinics. But since last August, the FDA has begun cracking down, issuing three enforcement actions.

Also worth noting: what the marketplace refers to as "stem cells" are in fact products that contain a very low amount of concentrated adult stem cells derived from fat or bone marrow. There are no pure stem cell products out there.

"The challenge right now is the effective translation and development of viable stem-cell based therapies," said Dr. Shane Shapiro, a sports medicine physician at the Mayo Clinic.

What constitutes a genetically modified organism? Europe is in the process of deciding.

8) An exciting coming trend is induced tissue regeneration.

The company AgeX, run by gerontologist and stem cell pioneer Dr. Mike West, is in preclinical trials for a treatment that can reset the regenerative potential of mature tissue.

This ability is lost in the early stages of life to help prevent cancer, but AgeX is interested in figuring out a way to restore it with pluripotent stem cells in adult tissue, to correct the damage incurred by aging. West said he expects the program to reach human clinical trials in the next five years.

9) Stem cells alone are not the whole story.

The future of cell therapy will involve cell derivatives—the things that cells secrete, like exosomes, microRNA, and viruses, that can be better controlled than the cells themselves.

Exosomes, which are extracellular vesicles released from cells, act as fingerprints that are useful for diagnosis and therapy, said Dr. Li Chen, the head of the Human Liver Cell Lab at the University of California-San Diego. Because exosomes are smaller than cells, they can also cross the blood-brain barrier.

Europe is the leading place for exosome research. Recently, a 21-year-old boy suffering from brain cancer there was treated with stem cell therapy, which failed, but then subsequently he received surgery with exosomes applied to his tumor, and he survived.

10) The European Union is in the process of deciding what legally constitutes a "genetically modified organism" – and the stakes are high.

The European Court of Justice, the EU's highest court, is considering this question: If a modification brought about by genetic engineering technology could also have occurred naturally, should the resulting organism be considered a GMO?

Just last week, an advocate general of the court proposed that whenever an organism is manmade that could theoretically occur naturally, it should not be considered a GMO, and therefore should not be subjected to such regulations.

If the Court agrees with the advice of its advocate general later this year, then the decision would have huge implications for biotech agriculture across Europe, paving the way for gene-edited crops to hit the market.

Kira Peikoff

Kira Peikoff is the editor-in-chief of As a journalist, her work has appeared in The New York Times, Newsweek, Nautilus, Popular Mechanics, The New York Academy of Sciences, and other outlets. She is also the author of four suspense novels that explore controversial issues arising from scientific innovation: Living Proof, No Time to Die, Die Again Tomorrow, and Mother Knows Best. Peikoff holds a B.A. in Journalism from New York University and an M.S. in Bioethics from Columbia University. She lives in New Jersey with her husband and two young sons. Follow her on Twitter @KiraPeikoff.