To Speed Treatments, Non-Traditional Partnerships May Be the Future

A handshake between a scientist and a businessman.
Drug development becomes even more complex as time passes. Increased regulation, new scientific methods, coupling of drugs with biomarkers, and an attempt to build drugs for much more specific populations – even individuals – all make clinical development more expensive and time-consuming. But the pressure is also constantly increasing to develop new, innovative medicines faster. So companies invest more dollars, with steadily decreasing yields in terms of such drugs on the market.
"Collaborations are in many cases the only possible solution--a powerful force driving old and new models."
The traditional models for clinical development are thus not producing the best results. Can collaboration between companies, academic institutions, and public (government and non-profit) organizations help solve the problem?
Collaboration has in fact yielded important developments in diagnostic and therapeutic products. However, truly collaborative efforts are in the minority. Particularly for biotech, diagnostic, device and pharmaceutical companies with stock traded on the public markets, or with funding from venture capital, private equity, or other investment-oriented platforms, there are strong drivers for limiting collaboration.
Particularly onerous are intellectual property (IP) concerns. Patent attorneys are normally terrified of collaborations, where the ownership of IP may be explicitly or implicitly impaired. Investment banks and fund managers are very nervous about modeling financial returns on new products where IP is shared. Development companies often have overt or implied policies greatly favoring internal development over collaboration. It could be argued that the greatest motivation behind the huge product in-licensing game is the desire to fully own product rights rather than to continue collaborations where the rights are not exclusive.
Bu the good news is that long-standing models and newer innovations in collaboration do work. Some examples are worth exploring. A huge influence currently on collaboration models across the spectrum is the revolution in immuno-oncology. More cash has gone into the development of drugs which enlist the immune system to attack cancer than any other field of drug development in history, some estimate by a factor of three. The great majority of current human clinical trials in the U.S. are in this field. There are over 200 separate drugs in development that attack a single target, PD-1--completely unprecedented. Due to the vast complexity of the human immune system, and also to the great promise that these drugs have shown in previously intractable cancers, the field has recognized that these drugs can only perform to full potential when used in combination. But the rationale for combinations is very obtuse, there are huge numbers of new drug targets and candidates, and there are many hundreds of institutions and companies involved in development of these combinations. Thus, collaborations are in many cases the only possible solution--a powerful force driving old and new models.
"As drugs have become more expensive, a huge drive has emerged, spurred by the brokers of health care, to limit the populations eligible to be prescribed an expensive new drug."
As marketing and reimbursement become increasingly complex, large commercial companies share the marketing of more products. Almost every large pharmaceutical and biotech company has products which are jointly sold with others.
Some pharmaceutical companies do a creditable job, often driven by ethical rather than economic concerns, of identifying drugs in their commercial or development portfolios which would be best in the hands of others, or which should be combined with products owned by others to achieve maximum patient benefit. Pfizer, for example, has a strong internal culture of not allowing products to become "dormant" in its hands, and actively seeks to collaboratively develop or license out such products.
Particularly in the immuno-oncology field, given the lack of firm knowledge about which combinations will work best in patients, both large and small companies are collaborating on both preclinical and clinical development. Merck, with its drug Keytruda, the leading anti-PD-1, has almost 1000 collaborative trials in progress. In most cases, the IP rights to a successful combination are not specified up-front; the desire is to see what works and deal with the rights and financial issues later.
Other companies have specifically engaged non-profit foundations and/or public bodies in collaborative efforts. This is of course not new--there is a very long history of pharmaceutical, diagnostic, and device companies either collaborating with the NIH or disease-focused foundations for development of products born from institutional research. The reverse is also true--both the NIH and foundations are often engaged to collaborate on development of products owned by industry. Sometimes these collaborations can be relatively complex. For example, Astra-Zeneca, Sloan Kettering, the Cancer Research Institute, and the National Cancer institute have engaged in a partnership to conduct clinical trials on combination cancer therapies involving the portfolio owned by Astra-Zeneca in combination with drugs owned by others, with device therapies and procedures, and with diagnostic products.
As drugs have become more expensive, a huge drive has emerged, spurred by the brokers of health care--the so-called 'insurance' companies and pharmaceutical benefit managers--to limit the populations eligible to be prescribed an expensive new drug. Thus, the field of "companion diagnostics" has crystallized. In a number of fields, including cardiology, urology, neurodegenerative disease, and oncology, developers of diagnostics and drugs seek each other out to jointly develop drug/diagnostic pairs which appropriately select patients for treatment. The number of such collaborations is escalating dramatically, although many large pharmaceutical companies have their own in-house programs.
"The lack of clinical trial data sharing has engendered some notable collaborative efforts."
But most large pharmaceutical companies are not in the business of selling diagnostic products, even if those products are so closely linked to a specific drug that they are included in the FDA-approved 'label' of that drug. As a result, some very collaborative relationships are emerging. Merck, which has a very large and active companion diagnostics development group, almost always seeks development and commercialization partners for internally innovated diagnostics – to the extent that the company actually gives away the rights and the commercial benefits of the diagnostic product. Such was the case with the Merck-developed Tau imaging agents related to Alzheimer's disease, which Merck made available without license to the entire industry. The company continues to drive such non-financial collaborations in other clinical disciplines.
Collaborations certainly take place between academic centers, but in comparison to others, they are few and of far less productive outcome. Many appear to be innovative and have great potential, but the results are often different. The collaboration between medical schools and research institutions in Northeast Ohio seems promising, but it is in large part just a means for gathering hard-to-find clinical trial patients into the giant local institutions, Case Western and the Cleveland Clinic. And the actual output of academic versus commercial development programs is usually poor. One new company recently did an exhaustive search for new clinical drug development candidates in a specific therapeutic area in academia and came up empty-handed, only to find a solid handful of candidate drugs "hiding" in pharmaceutical companies that they were willing to provide collaboratively or to license.
The lack of clinical trial data sharing has engendered some notable collaborative efforts. The Parker Institute for Cancer Immunotherapy initially set out to promulgate standards for clinical trial data collection to make trial results in the thousands of combination trials more comparable. However, after some initial frustration, they are now working collaboratively with biotech companies, academia, and pharmaceutical companies to drive forward specific combination trials that experts believe should be done.
Foundations and public organizations also enable or initiate collaborative research. The Prostate Cancer Foundation has aggressively put academic and hospital-based research institutions together with industry to push the development of new effective therapies and diagnostics for prostate cancer, with remarkable success. The Veterans Administration has recently embarked on an aggressive program of collaborations with industry (with the help of funding from the Prostate Cancer Foundation) to allow use of the VA population and the very complete patient records to start clinical trials and other development efforts that would otherwise be very difficult.
"The near future will bring some surprising collaborative successes in the development of new drugs, devices, and diagnostics, but of course, some serious disappointments as well."
Finally, the financial industry at times facilitates collaborations, although they are usually narrow. Fund managers often get two or more of their portfolio companies to pool assets and/or IP to push forward more rapid development, or to provide structure for developments that otherwise could not go forward due to size or other resource limitations. For example, Orbimed, a health-care-focused investment firm, consistently drives cross-company development efforts within its large portfolio of drug and device companies.
So collaborative efforts are very much alive and well, which is great news for patients. Current realities in science, politics, reimbursement, and finance are driving diversity in collaborative arrangements. The near future will bring some surprising collaborative successes in the development of new drugs, devices, and diagnostics, but of course, some serious disappointments as well. And the very negative influence of the IP profession on collaborations will not be soon defeated.
Meet Dr. Renee Wegrzyn, the first Director of President Biden's new health agency, ARPA-H
Today's podcast guest, Dr. Renee Wegrzyn, directs ARPA-H, a new agency formed last year to spearhead innovations in the realm of health. Time will tell if ARPA-H can produce achievements similar to DARPA, the agency on which it's based.
In today’s podcast episode, I talk with Renee Wegrzyn, appointed by President Biden as the first director of a federal agency created last year called the Advanced Research Projects Agency for Health, or ARPA-H. It’s inspired by DARPA, the agency that develops innovations for the Defense department and has been credited with hatching world changing technologies such as ARPANET, which became the internet.
Time will tell if ARPA-H will lead to similar achievements in the realm of health. That’s what President Biden and Congress expect in return for funding ARPA-H at 2.5 billion dollars over three years.
Listen on Apple | Listen on Spotify | Listen on Stitcher | Listen on Amazon | Listen on Google
How will the agency figure out which projects to take on, especially with so many patient advocates for different diseases demanding moonshot funding for rapid progress.
I talked with Dr. Wegrzyn about the opportunities and challenges, what lessons ARPA-H is borrowing from Operation Warp Speed, how she decided on the first ARPA-H project which was just announced recently, why a separate agency was needed instead of trying to reform HHS and the National Institutes of Health to be better at innovation, and how ARPA-H will make progress on disease prevention in addition to treatments for cancer, Alzheimer’s and diabetes, among many other health priorities.
Dr. Wegrzyn’s resume is filled with experience for her important role. She was a program manager at DARPA where she focused on applying gene editing and synthetic biology to the goal of improving biosecurity. For her work there, she was given the Superior Public Service Medal and, just in case that wasn’t enough ARPA experience, she also worked at another ARPA that leads advanced projects in intelligence, called I-ARPA. Before that, she was in charge of technical teams in the private sector working on gene therapies and disease diagnostics, among other areas. She has been a vice president of business development at Gingko Bioworks and headed innovation at Concentric by Gingko. Her training and education includes a PhD and undergraduate degree in applied biology from the Georgia Institute of Technology and she did her postdoc as an Alexander von Humboldt Fellow in Heidelberg, Germany.
As Dr. Wegrzyn told me, she’s “in the hot seat” - the pressure is on for ARPA-H especially after the need and potential for health innovation was spot lit by the pandemic and the unprecedented speed of vaccine development. We'll soon find out if ARPA-H can produce something in health that’s equivalent to DARPA’s creation of the internet.
Show links:
ARPA-H - https://arpa-h.gov/
Dr. Wegrzyn profile - https://arpa-h.gov/people/renee-wegrzyn/
Dr. Wegrzyn Twitter - https://twitter.com/rwegrzyn?lang=en
President Biden Announces Dr. Wegrzyn's appointment - https://www.whitehouse.gov/briefing-room/statement...
Leaps.org coverage of ARPA-H - https://leaps.org/arpa/
ARPA-H program for joints to heal themselves - https://arpa-h.gov/news/nitro/ -
ARPA-H virtual talent search - https://arpa-h.gov/news/aco-talent-search/
Matt Fuchs is the editor-in-chief of Leaps.org and Making Sense of Science. He is also a contributing reporter to the Washington Post and has written for the New York Times, Time Magazine, WIRED and the Washington Post Magazine, among other outlets. Follow him @fuchswriter.
Tiny, tough “water bears” may help bring new vaccines and medicines to sub-Saharan Africa
Tardigrades can completely dehydrate and later rehydrate themselves, a survival trick that scientists are harnessing to preserve medicines in hot temperatures.
Microscopic tardigrades, widely considered to be some of the toughest animals on earth, can survive for decades without oxygen or water and are thought to have lived through a crash-landing on the moon. Also known as water bears, they survive by fully dehydrating and later rehydrating themselves – a feat only a few animals can accomplish. Now scientists are harnessing tardigrades’ talents to make medicines that can be dried and stored at ambient temperatures and later rehydrated for use—instead of being kept refrigerated or frozen.
Many biologics—pharmaceutical products made by using living cells or synthesized from biological sources—require refrigeration, which isn’t always available in many remote locales or places with unreliable electricity. These products include mRNA and other vaccines, monoclonal antibodies and immuno-therapies for cancer, rheumatoid arthritis and other conditions. Cooling is also needed for medicines for blood clotting disorders like hemophilia and for trauma patients.
Formulating biologics to withstand drying and hot temperatures has been the holy grail for pharmaceutical researchers for decades. It’s a hard feat to manage. “Biologic pharmaceuticals are highly efficacious, but many are inherently unstable,” says Thomas Boothby, assistant professor of molecular biology at University of Wyoming. Therefore, during storage and shipping, they must be refrigerated at 2 to 8 degrees Celsius (35 to 46 degrees Fahrenheit). Some must be frozen, typically at -20 degrees Celsius, but sometimes as low -90 degrees Celsius as was the case with the Pfizer Covid vaccine.
For Covid, fewer than 73 percent of the global population received even one dose. The need for refrigerated or frozen handling was partially to blame.
The costly cold chain
The logistics network that ensures those temperature requirements are met from production to administration is called the cold chain. This cold chain network is often unreliable or entirely lacking in remote, rural areas in developing nations that have malfunctioning electrical grids. “Almost all routine vaccines require a cold chain,” says Christopher Fox, senior vice president of formulations at the Access to Advanced Health Institute. But when the power goes out, so does refrigeration, putting refrigerated or frozen medical products at risk. Consequently, the mRNA vaccines developed for Covid-19 and other conditions, as well as more traditional vaccines for cholera, tetanus and other diseases, often can’t be delivered to the most remote parts of the world.
To understand the scope of the challenge, consider this: In the U.S., more than 984 million doses of Covid-19 vaccine have been distributed so far. Each one needed refrigeration that, even in the U.S., proved challenging. Now extrapolate to all vaccines and the entire world. For Covid, fewer than 73 percent of the global population received even one dose. The need for refrigerated or frozen handling was partially to blame.
Globally, the cold chain packaging market is valued at over $15 billion and is expected to exceed $60 billion by 2033.
Adobe Stock
Freeze-drying, also called lyophilization, which is common for many vaccines, isn’t always an option. Many freeze-dried vaccines still need refrigeration, and even medicines approved for storage at ambient temperatures break down in the heat of sub-Saharan Africa. “Even in a freeze-dried state, biologics often will undergo partial rehydration and dehydration, which can be extremely damaging,” Boothby explains.
The cold chain is also very expensive to maintain. The global pharmaceutical cold chain packaging market is valued at more than $15 billion, and is expected to exceed $60 billion by 2033, according to a report by Future Market Insights. This cost is only expected to grow. According to the consulting company Accenture, the number of medicines that require the cold chain are expected to grow by 48 percent, compared to only 21 percent for non-cold-chain therapies.
Tardigrades to the rescue
Tardigrades are only about a millimeter long – with four legs and claws, and they lumber around like bears, thus their nickname – but could provide a big solution. “Tardigrades are unique in the animal kingdom, in that they’re able to survive a vast array of environmental insults,” says Boothby, the Wyoming professor. “They can be dried out, frozen, heated past the boiling point of water and irradiated at levels that are thousands of times more than you or I could survive.” So, his team is gradually unlocking tardigrades’ survival secrets and applying them to biologic pharmaceuticals to make them withstand both extreme heat and desiccation without losing efficacy.
Boothby’s team is focusing on blood clotting factor VIII, which, as the name implies, causes blood to clot. Currently, Boothby is concentrating on the so-called cytoplasmic abundant heat soluble (CAHS) protein family, which is found only in tardigrades, protecting them when they dry out. “We showed we can desiccate a biologic (blood clotting factor VIII, a key clotting component) in the presence of tardigrade proteins,” he says—without losing any of its effectiveness.
The researchers mixed the tardigrade protein with the blood clotting factor and then dried and rehydrated that substance six times without damaging the latter. This suggests that biologics protected with tardigrade proteins can withstand real-world fluctuations in humidity.
Furthermore, Boothby’s team found that when the blood clotting factor was dried and stabilized with tardigrade proteins, it retained its efficacy at temperatures as high as 95 degrees Celsius. That’s over 200 degrees Fahrenheit, much hotter than the 58 degrees Celsius that the World Meteorological Organization lists as the hottest recorded air temperature on earth. In contrast, without the protein, the blood clotting factor degraded significantly. The team published their findings in the journal Nature in March.
Although tardigrades rarely live more than 2.5 years, they have survived in a desiccated state for up to two decades, according to Animal Diversity Web. This suggests that tardigrades’ CAHS protein can protect biologic pharmaceuticals nearly indefinitely without refrigeration or freezing, which makes it significantly easier to deliver them in locations where refrigeration is unreliable or doesn’t exist.
The tricks of the tardigrades
Besides the CAHS proteins, tardigrades rely on a type of sugar called trehalose and some other protectants. So, rather than drying up, their cells solidify into rigid, glass-like structures. As that happens, viscosity between cells increases, thereby slowing their biological functions so much that they all but stop.
Now Boothby is combining CAHS D, one of the proteins in the CAHS family, with trehalose. He found that CAHS D and trehalose each protected proteins through repeated drying and rehydrating cycles. They also work synergistically, which means that together they might stabilize biologics under a variety of dry storage conditions.
“We’re finding the protective effect is not just additive but actually is synergistic,” he says. “We’re keen to see if something like that also holds true with different protein combinations.” If so, combinations could possibly protect against a variety of conditions.
Commercialization outlook
Before any stabilization technology for biologics can be commercialized, it first must be approved by the appropriate regulators. In the U.S., that’s the U.S. Food and Drug Administration. Developing a new formulation would require clinical testing and vast numbers of participants. So existing vaccines and biologics likely won’t be re-formulated for dry storage. “Many were developed decades ago,” says Fox. “They‘re not going to be reformulated into thermo-stable vaccines overnight,” if ever, he predicts.
Extending stability outside the cold chain, even for a few days, can have profound health, environmental and economic benefits.
Instead, this technology is most likely to be used for the new products and formulations that are just being created. New and improved vaccines will be the first to benefit. Good candidates include the plethora of mRNA vaccines, as well as biologic pharmaceuticals for neglected diseases that affect parts of the world where reliable cold chain is difficult to maintain, Boothby says. Some examples include new, more effective vaccines for malaria and for pathogenic Escherichia coli, which causes diarrhea.
Tallying up the benefits
Extending stability outside the cold chain, even for a few days, can have profound health, environmental and economic benefits. For instance, MenAfriVac, a meningitis vaccine (without tardigrade proteins) developed for sub-Saharan Africa, can be stored at up to 40 degrees Celsius for four days before administration. “If you have a few days where you don’t need to maintain the cold chain, it’s easier to transport vaccines to remote areas,” Fox says, where refrigeration does not exist or is not reliable.
Better health is an obvious benefit. MenAfriVac reduced suspected meningitis cases by 57 percent in the overall population and more than 99 percent among vaccinated individuals.
Lower healthcare costs are another benefit. One study done in Togo found that the cold chain-related costs increased the per dose vaccine price up to 11-fold. The ability to ship the vaccines using the usual cold chain, but transporting them at ambient temperatures for the final few days cut the cost in half.
There are environmental benefits, too, such as reducing fuel consumption and greenhouse gas emissions. Cold chain transports consume 20 percent more fuel than non-cold chain shipping, due to refrigeration equipment, according to the International Trade Administration.
A study by researchers at Johns Hopkins University compared the greenhouse gas emissions of the new, oral Vaxart COVID-19 vaccine (which doesn’t require refrigeration) with four intramuscular vaccines (which require refrigeration or freezing). While the Vaxart vaccine is still in clinical trials, the study found that “up to 82.25 million kilograms of CO2 could be averted by using oral vaccines in the U.S. alone.” That is akin to taking 17,700 vehicles out of service for one year.
Although tardigrades’ protective proteins won’t be a component of biologic pharmaceutics for several years, scientists are proving that this approach is viable. They are hopeful that a day will come when vaccines and biologics can be delivered anywhere in the world without needing refrigerators or freezers en route.