To Speed Treatments, Non-Traditional Partnerships May Be the Future

A handshake between a scientist and a businessman.
Drug development becomes even more complex as time passes. Increased regulation, new scientific methods, coupling of drugs with biomarkers, and an attempt to build drugs for much more specific populations – even individuals – all make clinical development more expensive and time-consuming. But the pressure is also constantly increasing to develop new, innovative medicines faster. So companies invest more dollars, with steadily decreasing yields in terms of such drugs on the market.
"Collaborations are in many cases the only possible solution--a powerful force driving old and new models."
The traditional models for clinical development are thus not producing the best results. Can collaboration between companies, academic institutions, and public (government and non-profit) organizations help solve the problem?
Collaboration has in fact yielded important developments in diagnostic and therapeutic products. However, truly collaborative efforts are in the minority. Particularly for biotech, diagnostic, device and pharmaceutical companies with stock traded on the public markets, or with funding from venture capital, private equity, or other investment-oriented platforms, there are strong drivers for limiting collaboration.
Particularly onerous are intellectual property (IP) concerns. Patent attorneys are normally terrified of collaborations, where the ownership of IP may be explicitly or implicitly impaired. Investment banks and fund managers are very nervous about modeling financial returns on new products where IP is shared. Development companies often have overt or implied policies greatly favoring internal development over collaboration. It could be argued that the greatest motivation behind the huge product in-licensing game is the desire to fully own product rights rather than to continue collaborations where the rights are not exclusive.
Bu the good news is that long-standing models and newer innovations in collaboration do work. Some examples are worth exploring. A huge influence currently on collaboration models across the spectrum is the revolution in immuno-oncology. More cash has gone into the development of drugs which enlist the immune system to attack cancer than any other field of drug development in history, some estimate by a factor of three. The great majority of current human clinical trials in the U.S. are in this field. There are over 200 separate drugs in development that attack a single target, PD-1--completely unprecedented. Due to the vast complexity of the human immune system, and also to the great promise that these drugs have shown in previously intractable cancers, the field has recognized that these drugs can only perform to full potential when used in combination. But the rationale for combinations is very obtuse, there are huge numbers of new drug targets and candidates, and there are many hundreds of institutions and companies involved in development of these combinations. Thus, collaborations are in many cases the only possible solution--a powerful force driving old and new models.
"As drugs have become more expensive, a huge drive has emerged, spurred by the brokers of health care, to limit the populations eligible to be prescribed an expensive new drug."
As marketing and reimbursement become increasingly complex, large commercial companies share the marketing of more products. Almost every large pharmaceutical and biotech company has products which are jointly sold with others.
Some pharmaceutical companies do a creditable job, often driven by ethical rather than economic concerns, of identifying drugs in their commercial or development portfolios which would be best in the hands of others, or which should be combined with products owned by others to achieve maximum patient benefit. Pfizer, for example, has a strong internal culture of not allowing products to become "dormant" in its hands, and actively seeks to collaboratively develop or license out such products.
Particularly in the immuno-oncology field, given the lack of firm knowledge about which combinations will work best in patients, both large and small companies are collaborating on both preclinical and clinical development. Merck, with its drug Keytruda, the leading anti-PD-1, has almost 1000 collaborative trials in progress. In most cases, the IP rights to a successful combination are not specified up-front; the desire is to see what works and deal with the rights and financial issues later.
Other companies have specifically engaged non-profit foundations and/or public bodies in collaborative efforts. This is of course not new--there is a very long history of pharmaceutical, diagnostic, and device companies either collaborating with the NIH or disease-focused foundations for development of products born from institutional research. The reverse is also true--both the NIH and foundations are often engaged to collaborate on development of products owned by industry. Sometimes these collaborations can be relatively complex. For example, Astra-Zeneca, Sloan Kettering, the Cancer Research Institute, and the National Cancer institute have engaged in a partnership to conduct clinical trials on combination cancer therapies involving the portfolio owned by Astra-Zeneca in combination with drugs owned by others, with device therapies and procedures, and with diagnostic products.
As drugs have become more expensive, a huge drive has emerged, spurred by the brokers of health care--the so-called 'insurance' companies and pharmaceutical benefit managers--to limit the populations eligible to be prescribed an expensive new drug. Thus, the field of "companion diagnostics" has crystallized. In a number of fields, including cardiology, urology, neurodegenerative disease, and oncology, developers of diagnostics and drugs seek each other out to jointly develop drug/diagnostic pairs which appropriately select patients for treatment. The number of such collaborations is escalating dramatically, although many large pharmaceutical companies have their own in-house programs.
"The lack of clinical trial data sharing has engendered some notable collaborative efforts."
But most large pharmaceutical companies are not in the business of selling diagnostic products, even if those products are so closely linked to a specific drug that they are included in the FDA-approved 'label' of that drug. As a result, some very collaborative relationships are emerging. Merck, which has a very large and active companion diagnostics development group, almost always seeks development and commercialization partners for internally innovated diagnostics – to the extent that the company actually gives away the rights and the commercial benefits of the diagnostic product. Such was the case with the Merck-developed Tau imaging agents related to Alzheimer's disease, which Merck made available without license to the entire industry. The company continues to drive such non-financial collaborations in other clinical disciplines.
Collaborations certainly take place between academic centers, but in comparison to others, they are few and of far less productive outcome. Many appear to be innovative and have great potential, but the results are often different. The collaboration between medical schools and research institutions in Northeast Ohio seems promising, but it is in large part just a means for gathering hard-to-find clinical trial patients into the giant local institutions, Case Western and the Cleveland Clinic. And the actual output of academic versus commercial development programs is usually poor. One new company recently did an exhaustive search for new clinical drug development candidates in a specific therapeutic area in academia and came up empty-handed, only to find a solid handful of candidate drugs "hiding" in pharmaceutical companies that they were willing to provide collaboratively or to license.
The lack of clinical trial data sharing has engendered some notable collaborative efforts. The Parker Institute for Cancer Immunotherapy initially set out to promulgate standards for clinical trial data collection to make trial results in the thousands of combination trials more comparable. However, after some initial frustration, they are now working collaboratively with biotech companies, academia, and pharmaceutical companies to drive forward specific combination trials that experts believe should be done.
Foundations and public organizations also enable or initiate collaborative research. The Prostate Cancer Foundation has aggressively put academic and hospital-based research institutions together with industry to push the development of new effective therapies and diagnostics for prostate cancer, with remarkable success. The Veterans Administration has recently embarked on an aggressive program of collaborations with industry (with the help of funding from the Prostate Cancer Foundation) to allow use of the VA population and the very complete patient records to start clinical trials and other development efforts that would otherwise be very difficult.
"The near future will bring some surprising collaborative successes in the development of new drugs, devices, and diagnostics, but of course, some serious disappointments as well."
Finally, the financial industry at times facilitates collaborations, although they are usually narrow. Fund managers often get two or more of their portfolio companies to pool assets and/or IP to push forward more rapid development, or to provide structure for developments that otherwise could not go forward due to size or other resource limitations. For example, Orbimed, a health-care-focused investment firm, consistently drives cross-company development efforts within its large portfolio of drug and device companies.
So collaborative efforts are very much alive and well, which is great news for patients. Current realities in science, politics, reimbursement, and finance are driving diversity in collaborative arrangements. The near future will bring some surprising collaborative successes in the development of new drugs, devices, and diagnostics, but of course, some serious disappointments as well. And the very negative influence of the IP profession on collaborations will not be soon defeated.
New implants let paraplegics surf the web and play computer games
Rodney Gorham, an Australian living with ALS, has reconnected with the world, thanks to a brain-machine interface called the Stentrode.
When I greeted Rodney Gorham, age 63, in an online chat session, he replied within seconds: “My pleasure.”
“Are you moving parts of your body as you type?” I asked.
This time, his response came about five minutes later: “I position the cursor with the eye tracking and select the same with moving my ankles.” Gorham, a former sales representative from Melbourne, Australia, living with amyotrophic lateral sclerosis, or ALS, a rare form of Lou Gehrig’s disease that impairs the brain’s nerve cells and the spinal cord, limiting the ability to move. ALS essentially “locks” a person inside their own body. Gorham is conversing with me by typing with his mind only–no fingers in between his brain and his computer.
The brain-computer interface enabling this feat is called the Stentrode. It's the brainchild of Synchron, a company backed by Amazon’s Jeff Bezos and Microsoft cofounder Bill Gates. After Gorham’s neurologist recommended that he try it, he became one of the first volunteers to have an 8mm stent, laced with small electrodes, implanted into his jugular vein and guided by a surgeon into a blood vessel near the part of his brain that controls movement.
After arriving at their destination, these tiny sensors can detect neural activity. They relay these messages through a small receiver implanted under the skin to a computer, which then translates the information into words. This minimally invasive surgery takes a day and is painless, according to Gorham. Recovery time is typically short, about two days.
When a paralyzed patient thinks about trying to move their arms or legs, the motor cortex will fire patterns that are specific to the patient’s thoughts.
When a paralyzed patient such as Gorham thinks about trying to move their arms or legs, the motor cortex will fire patterns that are specific to the patient’s thoughts. This pattern is detected by the Stentrode and relayed to a computer that learns to associate this pattern with the patient’s physical movements. The computer recognizes thoughts about kicking, making a fist and other movements as signals for clicking a mouse or pushing certain letters on a keyboard. An additional eye-tracking device controls the movement of the computer cursor.
The process works on a letter by letter basis. That’s why longer and more nuanced responses often involve some trial and error. “I have been using this for about two years, and I enjoy the sessions,” Gorham typed during our chat session. Zafar Faraz, field clinical engineer at Synchron, sat next to Gorham, providing help when required. Gorham had suffered without internet access, but now he looks forward to surfing the web and playing video games.
Gorham, age 63, has been enjoying Stentrode sessions for about two years.
Rodeny Dekker
The BCI revolution
In the summer of 2021, Synchron became the first company to receive the FDA’s Investigational Device Exemption, which allows research trials on the Stentrode in human patients. This past summer, the company, together with scientists from Icahn School of Medicine at Mount Sinai and the Neurology and Neurosurgery Department at Utrecht University, published a paper offering a framework for how to develop BCIs for patients with severe paralysis – those who can't use their upper limbs to type or use digital devices.
Three months ago, Synchron announced the enrollment of six patients in a study called COMMAND based in the U.S. The company will seek approval next year from the FDA to make the Stentrode available for sale commercially. Meanwhile, other companies are making progress in the field of BCIs. In August, Neuralink announced a $280 million financing round, the biggest fundraiser yet in the field. Last December, Synchron announced a $75 million financing round. “One thing I can promise you, in five years from now, we’re not going to be where we are today. We're going to be in a very different place,” says Elad I. Levy, professor of neurosurgery and radiology at State University of New York in Buffalo.
The risk of hacking exists, always. Cybercriminals, for example, might steal sensitive personal data for financial reasons, blackmailing, or to spread malware to other connected devices while extremist groups could potentially hack BCIs to manipulate individuals into supporting their causes or carrying out actions on their behalf.
“The prospect of bestowing individuals with paralysis a renewed avenue for communication and motor functionality is a step forward in neurotech,” says Hayley Nelson, a neuroscientist and founder of The Academy of Cognitive and Behavioral Neuroscience. “It is an exciting breakthrough in a world of devastating, scary diseases,” says Neil McArthur, a professor of philosophy and director of the Centre for Professional and Applied Ethics at the University of Manitoba. “To connect with the world when you are trapped inside your body is incredible.”
While the benefits for the paraplegic community are promising, the Stentrode’s long-term effectiveness and overall impact needs more research on safety. “Potential risks like inflammation, damage to neural tissue, or unexpected shifts in synaptic transmission due to the implant warrant thorough exploration,” Nelson says.
There are also concens about data privacy concerns and the policies of companies to safeguard information processed through BCIs. “Often, Big Tech is ahead of the regulators because the latter didn’t envisage such a turn of events...and companies take advantage of the lack of legal framework to push forward,” McArthur says. Hacking is another risk. Cybercriminals could steal sensitive personal data for financial reasons, blackmailing, or to spread malware to other connected devices. Extremist groups could potentially hack BCIs to manipulate individuals into supporting their causes or carrying out actions on their behalf.
“We have to protect patient identity, patient safety and patient integrity,” Levy says. “In the same way that we protect our phones or computers from hackers, we have to stay ahead with anti-hacking software.” Even so, Levy thinks the anticipated benefits for the quadriplegic community outweigh the potential risks. “We are on the precipice of an amazing technology. In the future, we would be able to connect patients to peripheral devices that enhance their quality of life.”
In the near future, the Stentrode could enable patients to use the Stentrode to activate their wheelchairs, iPods or voice modulators. Synchron's focus is on using its BCI to help patients with significant mobility restrictions—not to enhance the lives of healthy people without any illnesses. Levy says we are not prepared for the implications of endowing people with superpowers.
I wondered what Gorham thought about that. “Pardon my question, but do you feel like you have sort of transcended human nature, being the first in a big line of cybernetic people doing marvelous things with their mind only?” was my last question to Gorham.
A slight smile formed on his lips. In less than a minute, he typed: “I do a little.”
Leading XPRIZE Healthspan and Beating Negativity with Dr. Peter Diamandis
XPRIZE founder and chairman Peter Diamandis launches XPRIZE Healthspan at an event on November 29.
A new competition by the XPRIZE Foundation is offering $101 million to researchers who discover therapies that give a boost to people aged 65-80 so their bodies perform more like when they were middle-aged.
For today’s podcast episode, I talked with Dr. Peter Diamandis, XPRIZE’s founder and executive chairman. Under Peter’s leadership, XPRIZE has launched 27 previous competitions with over $300 million in prize purses. The latest contest aims to enhance healthspan, or the period of life when older people can play with their grandkids without any restriction, disability or disease. Such breakthroughs could help prevent chronic diseases that are closely linked to aging. These illnesses are costly to manage and threaten to overwhelm the healthcare system, as the number of Americans over age 65 is rising fast.
In this competition, called XPRIZE Healthspan, multiple awards are available, depending on what’s achieved, with support from the nonprofit Hevolution Foundation and Chip Wilson, the founder of Lululemon and nonprofit SOLVE FSHD. The biggest prize, $81 million, is for improvements in cognition, muscle and immunity by 20 years. An improvement of 15 years will net $71 million, and 10 years will net $61 million.
In our conversation for this episode, Peter talks about his plans for XPRIZE Healthspan and why exponential technologies make the current era - even with all of its challenges - the most exciting time in human history. We discuss the best mental outlook that supports a person in becoming truly innovative, as well as the downsides of too much risk aversion. We talk about how to overcome the negativity bias in ourselves and in mainstream media, how Peter has shifted his own mindset to become more positive over the years, how to inspire a culture of innovation, Peter’s personal recommendations for lifestyle strategies to live longer and healthier, the innovations we can expect in various fields by 2030, the future of education and the importance of democratizing tech and innovation.
In addition to Peter’s pioneering leadership of XPRIZE, he is also the Executive Founder of Singularity University. In 2014, he was named by Fortune as one of the “World’s 50 Greatest Leaders.” As an entrepreneur, he’s started over 25 companies in the areas of health-tech, space, venture capital and education. He’s Co-founder and Vice-Chairman of two public companies, Celularity and Vaxxinity, plus being Co-founder & Chairman of Fountain Life, a fully-integrated platform delivering predictive, preventative, personalized and data-driven health. He also serves as Co-founder of BOLD Capital Partners, a venture fund with a half-billion dollars under management being invested in exponential technologies and longevity companies. Peter is a New York Times Bestselling author of four books, noted during our conversation and in the show notes of this episode. He has degrees in molecular genetics and aerospace engineering from MIT and holds an M.D. from Harvard Medical School.
Show links
- Peter Diamandis bio
- New XPRIZE Healthspan
- Peter Diamandis books
- 27 XPRIZE competitions and counting
- Life Force by Peter Diamandis and Tony Robbins
- Peter Diamandis Twitter
- Longevity Insider newsletter – AI identifies the news
- Peter Diamandis Longevity Handbook
- Hevolution funding for longevity
XPRIZE Founder Peter Diamandis speaks with Mehmoud Khan, CEO of Hevolution Foundation, at the launch of XPRIZE Healthspan.
Hevolution Foundation
Matt Fuchs is the editor-in-chief of Leaps.org and Making Sense of Science. He is also a contributing reporter to the Washington Post and has written for the New York Times, Time Magazine, WIRED and the Washington Post Magazine, among other outlets. Follow him @fuchswriter.