Sloppy Science Happens More Than You Think

Manipulating DNA through gene editing.

(© catalin/Fotolia)

The media loves to tout scientific breakthroughs, and few are as toutable – and in turn, have been as touted – as CRISPR. This method of targeted DNA excision was discovered in bacteria, which use it as an adaptive immune system to combat reinfection with a previously encountered virus.

Shouldn't the editors at a Nature journal know better than to have published an incorrect paper in the first place?

It is cool on so many levels: not only is the basic function fascinating, reminding us that we still have more to discover about even simple organisms that we thought we knew so well, but the ability it grants us to remove and replace any DNA of interest has almost limitless applications in both the lab and the clinic. As if that didn't make it sexy enough, add in a bicoastal, male-female, very public and relatively ugly patent battle, and the CRISPR story is irresistible.

And then last summer, a bombshell dropped. The prestigious journal Nature Methods published a paper in which the authors claimed that CRISPR could cause many unintended mutations, rendering it unfit for clinical use. Havoc duly ensued; stocks in CRISPR-based companies plummeted. Thankfully, the authors of the offending paper were responsible, good scientists; they reassessed, then recanted. Their attention- and headline- grabbing results were wrong, and they admitted as much, leading Nature Methods to formally retract the paper this spring.

How did this happen? Shouldn't the editors at a Nature journal know better than to have published this in the first place?

Alas, high-profile scientific journals publish misleading and downright false results fairly regularly. Some errors are unavoidable – that's how the scientific method works. Hypotheses and conclusions will invariably be overturned as new data becomes available and new technologies are developed that allow for deeper and deeper studies. That's supposed to happen. But that's not what we're talking about here. Nor are we talking about obvious offenses like outright plagiarism. We're talking about mistakes that are avoidable, and that still have serious ramifications.

The cultures of both industry and academia promote research that is poorly designed and even more poorly analyzed.

Two parties are responsible for a scientific publication, and thus two parties bear the blame when things go awry: the scientists who perform and submit the work, and the journals who publish it. Unfortunately, both are incentivized for speedy and flashy publications, and not necessarily for correct publications. It is hardly a surprise, then, that we end up with papers that are speedy and flashy – and not necessarily correct.

"Scientists don't lie and submit falsified data," said Andy Koff, a professor of Molecular Biology at Sloan Kettering Institute, the basic research arm of Memorial Sloan Kettering Cancer Center. Richard Harris, who wrote the book on scientific misconduct running the gamut from unconscious bias and ignorance to more malicious fraudulence, largely concurs (full disclosure: I reviewed the book here). "Scientists want to do good science and want to be recognized as such," he said. But even so, the cultures of both industry and academia promote research that is poorly designed and even more poorly analyzed. In Rigor Mortis: How Sloppy Science Creates Worthless Cures, Crushes Hope, and Wastes Millions, Harris describes how scientists must constantly publish in order to maintain their reputations and positions, to get grants and tenure and students. "They are disincentivized from doing that last extra experiment to prove their results," he said; it could prove too risky if it could cost them a publication.

Ivan Oransky and Adam Marcus founded Retraction Watch, a blog that tracks the retraction of scientific papers, in 2010. Oransky pointed out that blinded peer review – the pride and joy of the scientific publishing enterprise – is a large part of the problem. "Pre-publication peer review is still important, but we can't treat it like the only check on the system. Papers are being reviewed by non-experts, and reviewers are asked to review papers only tangentially related to their field. Moreover, most peer reviewers don't look at the underlying or raw data, even when it is available. How then can they tell if the analysis is flawed or the data is accurate?" he wondered.

Mistaken publications also erode the public's opinion of legitimate science, which is problematic since that opinion isn't especially high to begin with.

Koff agreed that anonymous peer review is valuable, but severely flawed. "Blinded review forces a collective view of importance," he said. "If an article disagrees with the reviewer's worldview, the article gets rejected or forced to adhere to that worldview – even if that means pushing the data someplace it shouldn't necessarily go." We have lost the scientific principle behind review, he thinks, which was to critically analyze a paper. But instead of challenging fundamental assumptions within a paper, reviewers now tend to just ask for more and more supplementary data. And don't get him started on editors. "Editors are supposed to arbitrate between reviewers and writers and they have completely abdicated this responsibility, at every journal. They do not judge, and that's a real failing."

Harris laments the wasted time, effort, and resources that result when erroneous ideas take hold in a field, not to mention lives lost when drug discovery is predicated on basic science findings that end up being wrong. "When no one takes the time, care, and money to reproduce things, science isn't stopping – but it is slowing down," he noted. Mistaken publications also erode the public's opinion of legitimate science, which is problematic since that opinion isn't especially high to begin with.

Scientists and publishers don't only cause the problem, though – they may also provide the solution. Both camps are increasingly recognizing and dealing with the crisis. The self-proclaimed "data thugs" Nick Brown and James Heathers use pretty basic arithmetic to reveal statistical errors in papers. The microbiologist Elisabeth Bik scans the scientific literature for problematic images "in her free time." The psychologist Brian Nosek founded the Center for Open Science, a non-profit organization dedicated to promoting openness, integrity, and reproducibility in scientific research. The Nature family of journals – yes, the one responsible for the latest CRISPR fiasco – has its authors complete a checklist to combat irreproducibility, à la Atul Gawande. And Nature Communications, among other journals, uses transparent peer review, in which authors can opt to have the reviews of their manuscript published anonymously alongside the completed paper. This practice "shows people how the paper evolved," said Koff "and keeps the reviewer and editor accountable. Did the reviewer identify the major problems with the paper? Because there are always major problems with a paper."

Diana Gitig
Diana Gitig got her PhdD in cell biology and genetics from Cornell University's Graduate School of Medical Sciences in 2001 and has a been a freelance science writer ever since. She enjoys covering a wide range of topics, from cancer research to immunology to neuroscience to agriculture. She has written for, Science, and PNAS, among other venues. Diana is based in New York.
Get our top stories twice a month
Follow us on

Reporter Michaela Haas takes Aptera's Sol car out for a test drive in San Diego, Calif.

Courtesy Haas

The white two-seater car that rolls down the street in the Sorrento Valley of San Diego looks like a futuristic batmobile, with its long aerodynamic tail and curved underbelly. Called 'Sol' (Spanish for "sun"), it runs solely on solar and could be the future of green cars. Its maker, the California startup Aptera, has announced the production of Sol, the world's first mass-produced solar vehicle, by the end of this year. Aptera co-founder Chris Anthony points to the sky as he says, "On this sunny California day, there is ample fuel. You never need to charge the car."

If you live in a sunny state like California or Florida, you might never need to plug in the streamlined Sol because the solar panels recharge while driving and parked. Its 60-mile range is more than the average commuter needs. For cloudy weather, battery packs can be recharged electronically for a range of up to 1,000 miles. The ultra-aerodynamic shape made of lightweight materials such as carbon, Kevlar, and hemp makes the Sol four times more energy-efficient than a Tesla, according to Aptera. "The material is seven times stronger than steel and even survives hail or an angry ex-girlfriend," Anthony promises.

Keep Reading Keep Reading
Michaela Haas
Michaela Haas, PhD, is an award-winning reporter and author, most recently of Bouncing Forward: The Art and Science of Cultivating Resilience (Atria). Her work has been published in the New York Times, Mother Jones, the Huffington Post, and numerous other media. Find her at and Twitter @MichaelaHaas!

A stock image of a home test for COVID-19.

Photo by Annie Spratt on Unsplash

Last summer, when fast and cheap Covid tests were in high demand and governments were struggling to manufacture and distribute them, a group of independent scientists working together had a bit of a breakthrough.

Working on the Just One Giant Lab platform, an online community that serves as a kind of clearing house for open science researchers to find each other and work together, they managed to create a simple, one-hour Covid test that anyone could take at home with just a cup of hot water. The group tested it across a network of home and professional laboratories before being listed as a semi-finalist team for the XPrize, a competition that rewards innovative solutions-based projects. Then, the group hit a wall: they couldn't commercialize the test.

Keep Reading Keep Reading
Christi Guerrini and Alex Pearlman

Christi Guerrini, JD, MPH studies biomedical citizen science and is an Associate Professor at Baylor College of Medicine. Alex Pearlman, MA, is a science journalist and bioethicist who writes about emerging issues in biotechnology. They have recently launched, a place for discussion about nontraditional research.