One Day, There Might Be a Drug for a Broken Heart

A sad woman peering through sunlit blinds.
For Tony Y., 37, healing from heartbreak is slow and incomplete. Each of several exes is associated with a cluster of sore memories. Although he loves the Blue Ridge Mountains, he can't visit because they remind him of a romantic holiday years ago.
If a new drug made rejections less painful, one expert argues, it could relieve or even prevent major depression.
Like some 30 to 40 percent of depressed patients, Tony hasn't had success with current anti-depressants. One day, psychiatrists may be able to offer him a new kind of opioid, an anti-depressant for people suffering from the cruel pain of rejection.
A Surprising Discovery
As we move through life, rejections -- bullying in school, romantic breakups, and divorces -- are powerful triggers to depressive episodes, observes David Hsu, a neuroscientist at Stony Brook University School of Medicine in Long Island, New York. If a new drug made them less painful, he argues, it could relieve or even prevent major depression.
Our bodies naturally produce opioids to soothe physical pain, and opioid drugs like morphine and oxycodone work by plugging into the same receptors in our brains. The same natural opioids may also respond to emotional hurts, and painkillers can dramatically affect mood. Today's epidemic of opioid abuse raises the question: How many lives might have been saved if we had a safe, non-addictive option for medicating emotional pain?
Already one anti-depressant, tianeptine, locks into the mu opioid receptor, the target of morphine and oxycodone. Scientists knew that tianeptine, prescribed in some countries in Europe, Asia, and Latin America, acted differently than the most common anti-depressants in use today, which affect the levels of other brain chemicals, serotonin and norepinephrine. But the discovery in 2014 that tianeptine tapped the mu receptor was a "huge surprise," says co-author Jonathan Javitch, chief of the Division of Molecular Therapeutics at Columbia University.
The news arrived when scientists' basic understanding of depression is in flux; viewed biologically, it may cover several disorders. One of them could hinge on opioids. It's possible that some people release fewer opioids naturally or that the receptors for it are less effective.
Javitch has launched a startup, Kures, to make tianeptine more effective and convenient and to find other opioid-modulators. That may seem quixotic in the midst of an opioid epidemic, but tianeptine doesn't create dependency in low, prescription doses and has been used safely around the world for decades. To identify likely patients, cofounder Andrew Kruegel is looking for ways to "segment the depressed population by measures that have to do with opioid release," he says.
Is Emotional Pain Actually "Pain"?
No one imagines that the pain from rejection or loss is the same as pain from a broken leg. Physical pain is two perceptions—a sensory perception and an "affective" one, which makes pain unpleasant.
Exploration of an overlap between physical and what research psychologists call "social pain" has heated up since the mid-2000s.
The sensory perception, processed by regions of the brain called the primary and secondary somatosensory cortices and the posterior insula, tells us whether the pain is in your arm or your leg, how strong it is and whether it is a sting, ache, or has some other quality. The affective perception, in another part of the brain called the dorsal anterior cingulate cortex and the anterior insula, tells us that we want the pain to stop, fast! When people with lesions in the latter areas experience a stimulus that ordinarily would be painful, they don't mind it.
Science now suggests that emotional pain arises in the affective brain circuits. Exploration of an overlap between physical and what research psychologists call "social pain" has heated up since the mid-2000s. Animal evidence goes back to the 1970s: babies separated from their mothers showed less distress when given morphine, and more if dosed with naloxone, the opioid antagonist.
Parents, of course, face the question of whether Baby feels alone or wet whenever she howls. And the answer is: both hurt. Being abandoned is the ultimate threat in our early life, and it makes sense that a brain system to monitor social threats would piggyback upon an existing system for pain. Piggybacking is a feature of evolution. An ancestor who felt "hurt" when threatened by rejection might learn adaptive behavior: to cooperate or run.
In 2010, a large multi-university team led by Nathan DeWall at the University of Kentucky, reported that acetaminophen (Tylenol) reduced social pain. Undergraduates took 500 mg of acetaminophen upon awakening and at bedtime every day for three weeks and reported nightly about their day using a previously-tested "Hurt Feelings Scale," rating how strongly they agreed with questions like, "Today, being teased hurt my feelings."
Over the weeks, their reports of hurt feelings steadily declined, while remaining flat in a control group that took placebos. In a second experiment, the research group showed that, compared to controls, people who had taken acetaminophen for three weeks showed less brain activity in the affective brain circuits while they experienced rejection during a virtual ball-tossing game. Later, Hsu's brain scan research supported the idea that rejection triggers the mu opioid receptor system, which normally provides pain-dampening opioids.
More evidence comes from nonhuman primates with lesions in the affective circuits: They cry less when separated from caregivers or social groups.
Heartbreak seems to lie in those regions: women with major depression are more hurt by romantic rejection than normal controls are and show more activity in those areas in brain scans, Hsu found. Also, factors that make us more vulnerable to rejection -- like low self-esteem -- are linked to more activity in the key areas, studies show.
The trait "high rejection sensitivity" increases your risk of depression more than "global neuroticism" does, Hsu observes, and predicts a poor recovery from depression. Pain sensitivity is another clue: People with a gene linked to it seem to be more hurt by social exclusion. Once you're depressed, you become more rejection-sensitive and prone to pain—a classic bad feedback loop.
"Ideally, we'd have biomarkers to distinguish when loss becomes complicated grief and then depression, and we might prevent the transition with a drug."
Helen Mayberg, a neurologist renowned for her study of brain circuits in depression, sees, as Hsu does, the possibility of preventing depressions. "Nobody would suggest we treat routine bad social pain with drugs. But it is true that in susceptible people, losing a partner, for example, can lead to a full-blown depression," says Mayberg, who is the founding director of The Center for Advanced Circuit Therapeutics at Mount Sinai's Icahn School of Medicine in New York City. "Ideally, we'd have biomarkers to distinguish when loss becomes complicated grief and then depression, and we might prevent the transition with a drug. It would be like taking medication when you feel the warning symptoms of a headache to prevent a full-blown migraine."
A Way Out of the Opioid Crisis?
The exploration of social pain should lead us to a deeper understanding of pain, beyond the sharp distinctions between "physical" and "psychological." Finding our way out of the current crisis may require that deeper understanding. About half of the people with opioid prescriptions have mental health disorders. "I expect there are a lot of people using street opioids—heroin or prescriptions purchased from others--to self-medicate psychological pain," Kreugel says.
What we may need, he suggests, is "a new paradigm for using opioids in psychiatry: low, sub-analgesic, sub-euphoric dosing." But so far it hasn't been easy. Investors don't flock to fund psychiatric drugs and in 2018, the word opioid is poison.
As for Tony Y., he's struggled for three years to recover from his most serious relationship. "Driving around highways looking at exit signs toward places we visited together sometimes fills me with unbearable anguish," he admits. "And because we used to do so much bird watching together, sometimes a mere glimpse of a random bird sets me off." He perks up at the idea of a heartbreak drug. "If the side effects didn't seem bad, I would consider it, absolutely."
Scientists implant brain cells to counter Parkinson's disease
In a phase 1 research trial announced late last month, patients reported that their symptoms had improved after stem cells were implanted into their brains.
Martin Taylor was only 32 when he was diagnosed with Parkinson's, a disease that causes tremors, stiff muscles and slow physical movement - symptoms that steadily get worse as time goes on.
“It's horrible having Parkinson's,” says Taylor, a data analyst, now 41. “It limits my ability to be the dad and husband that I want to be in many cruel and debilitating ways.”
Today, more than 10 million people worldwide live with Parkinson's. Most are diagnosed when they're considerably older than Taylor, after age 60. Although recent research has called into question certain aspects of the disease’s origins, Parkinson’s eventually kills the nerve cells in the brain that produce dopamine, a signaling chemical that carries messages around the body to control movement. Many patients have lost 60 to 80 percent of these cells by the time they are diagnosed.
For years, there's been little improvement in the standard treatment. Patients are typically given the drug levodopa, a chemical that's absorbed by the brain’s nerve cells, or neurons, and converted into dopamine. This drug addresses the symptoms but has no impact on the course of the disease as patients continue to lose dopamine producing neurons. Eventually, the treatment stops working effectively.
BlueRock Therapeutics, a cell therapy company based in Massachusetts, is taking a different approach by focusing on the use of stem cells, which can divide into and generate new specialized cells. The company makes the dopamine-producing cells that patients have lost and inserts these cells into patients' brains. “We have a disease with a high unmet need,” says Ahmed Enayetallah, the senior vice president and head of development at BlueRock. “We know [which] cells…are lost to the disease, and we can make them. So it really came together to use stem cells in Parkinson's.”
In a phase 1 research trial announced late last month, patients reported that their symptoms had improved after a year of treatment. Brain scans also showed an increased number of neurons generating dopamine in patients’ brains.
Increases in dopamine signals
The recent phase 1 trial focused on deploying BlueRock’s cell therapy, called bemdaneprocel, to treat 12 patients suffering from Parkinson’s. The team developed the new nerve cells and implanted them into specific locations on each side of the patient's brain through two small holes in the skull made by a neurosurgeon. “We implant cells into the places in the brain where we think they have the potential to reform the neural networks that are lost to Parkinson's disease,” Enayetallah says. The goal is to restore motor function to patients over the long-term.
Five patients were given a relatively low dose of cells while seven got higher doses. Specialized brain scans showed evidence that the transplanted cells had survived, increasing the overall number of dopamine producing cells. The team compared the baseline number of these cells before surgery to the levels one year later. “The scans tell us there is evidence of increased dopamine signals in the part of the brain affected by Parkinson's,” Enayetallah says. “Normally you’d expect the signal to go down in untreated Parkinson’s patients.”
"I think it has a real chance to reverse motor symptoms, essentially replacing a missing part," says Tilo Kunath, a professor of regenerative neurobiology at the University of Edinburgh.
The team also asked patients to use a specific type of home diary to log the times when symptoms are well controlled and when they prevent normal activity. After a year of treatment, patients taking the higher dose reported symptoms were under control for an average of 2.16 hours per day above their baselines. At the smaller dose, these improvements were significantly lower, 0.72 hours per day. The higher-dose patients reported a corresponding decrease in the amount of time when symptoms were uncontrolled, by an average of 1.91 hours, compared to 0.75 hours for the lower dose. The trial was safe, and patients tolerated the year of immunosuppression needed to make sure their bodies could handle the foreign cells.
Claire Bale, the associate director of research at Parkinson's U.K., sees the promise of BlueRock's approach, while noting the need for more research on a possible placebo effect. The trial participants knew they were getting the active treatment, and placebo effects are known to be a potential factor in Parkinson’s research. Even so, “The results indicate that this therapy produces improvements in symptoms for Parkinson's, which is very encouraging,” Bale says.
Tilo Kunath, a professor of regenerative neurobiology at the University of Edinburgh, also finds the results intriguing. “I think it's excellent,” he says. “I think it has a real chance to reverse motor symptoms, essentially replacing a missing part.” However, it could take time for this therapy to become widely available, Kunath says, and patients in the late stages of the disease may not benefit as much. “Data from cell transplantation with fetal tissue in the 1980s and 90s show that cells did not survive well and release dopamine in these [late-stage] patients.”
Searching for the right approach
There's a long history of using cell therapy as a treatment for Parkinson's. About four decades ago, scientists at the University of Lund in Sweden developed a method in which they transferred parts of fetal brain tissue to patients with Parkinson's so that their nerve cells would produce dopamine. Many benefited, and some were able to stop their medication. However, the use of fetal tissue was highly controversial at that time, and the tissues were difficult to obtain. Later trials in the U.S. showed that people benefited only if a significant amount of the tissue was used, and several patients experienced side effects. Eventually, the work lost momentum.
“Like many in the community, I'm aware of the long history of cell therapy,” says Taylor, the patient living with Parkinson's. “They've long had that cure over the horizon.”
In 2000, Lorenz Studer led a team at the Memorial Sloan Kettering Centre, in New York, to find the chemical signals needed to get stem cells to differentiate into cells that release dopamine. Back then, the team managed to make cells that produced some dopamine, but they led to only limited improvements in animals. About a decade later, in 2011, Studer and his team found the specific signals needed to guide embryonic cells to become the right kind of dopamine producing cells. Their experiments in mice, rats and monkeys showed that their implanted cells had a significant impact, restoring lost movement.
Studer then co-founded BlueRock Therapeutics in 2016. Forming the most effective stem cells has been one of the biggest challenges, says Enayetallah, the BlueRock VP. “It's taken a lot of effort and investment to manufacture and make the cells at the right scale under the right conditions.” The team is now using cells that were first isolated in 1998 at the University of Wisconsin, a major advantage because they’re available in a virtually unlimited supply.
Other efforts underway
In the past several years, University of Lund researchers have begun to collaborate with the University of Cambridge on a project to use embryonic stem cells, similar to BlueRock’s approach. They began clinical trials this year. A company in Japan, Sumitomo, is using a different strategy; instead of stem cells from embryos, they’re inducing pluripotent stem cells made from adults’ blood or skin and then reprogramming them into dopamine producing neurons. Although Sumitomo started clinical trials earlier than BlueRock, they haven’t yet revealed any results.
“It's a rapidly evolving field,” says Emma Lane, a pharmacologist at the University of Cardiff who researches clinical interventions for Parkinson’s. “But BlueRock’s trial is the first full phase 1 trial to report such positive findings with stem cell based therapies.” The company’s upcoming phase 2 research will be critical to show how effectively the therapy can improve disease symptoms, she added.
The cure over the horizon
BlueRock will continue to look at data from patients in the phase 1 trial to monitor the treatment’s effects over a two-year period. Meanwhile, the team is planning the phase 2 trial with more participants, including a placebo group.
For patients with Parkinson’s like Martin Taylor, the therapy offers some hope, though Taylor recognizes that more research is needed.
BlueRock Therapeutics
“Like many in the community, I'm aware of the long history of cell therapy,” he says. “They've long had that cure over the horizon.” His expectations are somewhat guarded but, he says, “it's certainly positive to see…movement in the field again.”
"If we can demonstrate what we’re seeing today in a more robust study, that would be great,” Enayetallah says. “At the end of the day, we want to address that unmet need in a field that's been waiting for a long time.”
Scientists experiment with burning iron as a fuel source
Sparklers produce a beautiful display of light and heat by burning metal dust, which contains iron. The recent work of Canadian and Dutch researchers suggests we can use iron as a cheap, carbon-free fuel.
Story by Freethink
Try burning an iron metal ingot and you’ll have to wait a long time — but grind it into a powder and it will readily burst into flames. That’s how sparklers work: metal dust burning in a beautiful display of light and heat. But could we burn iron for more than fun? Could this simple material become a cheap, clean, carbon-free fuel?
In new experiments — conducted on rockets, in microgravity — Canadian and Dutch researchers are looking at ways of boosting the efficiency of burning iron, with a view to turning this abundant material — the fourth most common in the Earth’s crust, about about 5% of its mass — into an alternative energy source.
Iron as a fuel
Iron is abundantly available and cheap. More importantly, the byproduct of burning iron is rust (iron oxide), a solid material that is easy to collect and recycle. Neither burning iron nor converting its oxide back produces any carbon in the process.
Iron oxide is potentially renewable by reacting with electricity or hydrogen to become iron again.
Iron has a high energy density: it requires almost the same volume as gasoline to produce the same amount of energy. However, iron has poor specific energy: it’s a lot heavier than gas to produce the same amount of energy. (Think of picking up a jug of gasoline, and then imagine trying to pick up a similar sized chunk of iron.) Therefore, its weight is prohibitive for many applications. Burning iron to run a car isn’t very practical if the iron fuel weighs as much as the car itself.
In its powdered form, however, iron offers more promise as a high-density energy carrier or storage system. Iron-burning furnaces could provide direct heat for industry, home heating, or to generate electricity.
Plus, iron oxide is potentially renewable by reacting with electricity or hydrogen to become iron again (as long as you’ve got a source of clean electricity or green hydrogen). When there’s excess electricity available from renewables like solar and wind, for example, rust could be converted back into iron powder, and then burned on demand to release that energy again.
However, these methods of recycling rust are very energy intensive and inefficient, currently, so improvements to the efficiency of burning iron itself may be crucial to making such a circular system viable.
The science of discrete burning
Powdered particles have a high surface area to volume ratio, which means it is easier to ignite them. This is true for metals as well.
Under the right circumstances, powdered iron can burn in a manner known as discrete burning. In its most ideal form, the flame completely consumes one particle before the heat radiating from it combusts other particles in its vicinity. By studying this process, researchers can better understand and model how iron combusts, allowing them to design better iron-burning furnaces.
Discrete burning is difficult to achieve on Earth. Perfect discrete burning requires a specific particle density and oxygen concentration. When the particles are too close and compacted, the fire jumps to neighboring particles before fully consuming a particle, resulting in a more chaotic and less controlled burn.
Presently, the rate at which powdered iron particles burn or how they release heat in different conditions is poorly understood. This hinders the development of technologies to efficiently utilize iron as a large-scale fuel.
Burning metal in microgravity
In April, the European Space Agency (ESA) launched a suborbital “sounding” rocket, carrying three experimental setups. As the rocket traced its parabolic trajectory through the atmosphere, the experiments got a few minutes in free fall, simulating microgravity.
One of the experiments on this mission studied how iron powder burns in the absence of gravity.
In microgravity, particles float in a more uniformly distributed cloud. This allows researchers to model the flow of iron particles and how a flame propagates through a cloud of iron particles in different oxygen concentrations.
Existing fossil fuel power plants could potentially be retrofitted to run on iron fuel.
Insights into how flames propagate through iron powder under different conditions could help design much more efficient iron-burning furnaces.
Clean and carbon-free energy on Earth
Various businesses are looking at ways to incorporate iron fuels into their processes. In particular, it could serve as a cleaner way to supply industrial heat by burning iron to heat water.
For example, Dutch brewery Swinkels Family Brewers, in collaboration with the Eindhoven University of Technology, switched to iron fuel as the heat source to power its brewing process, accounting for 15 million glasses of beer annually. Dutch startup RIFT is running proof-of-concept iron fuel power plants in Helmond and Arnhem.
As researchers continue to improve the efficiency of burning iron, its applicability will extend to other use cases as well. But is the infrastructure in place for this transition?
Often, the transition to new energy sources is slowed by the need to create new infrastructure to utilize them. Fortunately, this isn’t the case with switching from fossil fuels to iron. Since the ideal temperature to burn iron is similar to that for hydrocarbons, existing fossil fuel power plants could potentially be retrofitted to run on iron fuel.
This article originally appeared on Freethink, home of the brightest minds and biggest ideas of all time.