Deaf Scientists Just Created Over 1000 New Signs to Dramatically Improve Ability to Communicate

Sarah Latchney, the first deaf PhD student at the University of Rochester School of Medicine & Dentistry, pictured here at work at a lab in the department of environmental sciences.

(Courtesy Latchney)

For the deaf, talent and hard work may not be enough to succeed in the sciences. According to the National Science Foundation, deaf Americans are vastly underrepresented in the STEM fields, a discrepancy that has profound economic implications.

The problem with STEM careers for the deaf and hard-of-hearing is that there are not enough ASL signs available.

Deaf and hard-of-hearing professionals in the sciences earn 31 percent more than those employed in other careers, according to a 2010 study by the National Technical Institute for the Deaf (NTID) in Rochester, N.Y., the largest technical college for deaf and hard-of-hearing students. But at the same time, in 2017, U.S. students with hearing disabilities earned only 1.1 percent of the 39,435 doctoral degrees awarded in science and engineering.

One reason so few deaf students gravitate to science careers and may struggle to complete doctoral programs is the communication chasm between deaf and hard-of-hearing scientists and their hearing colleagues.

Lorne Farovitch is a doctoral candidate in biomedical science at the University of Rochester of New York. Born deaf and raised by two deaf parents, he communicated solely in American Sign Language (ASL) until reaching graduate school. There, he became frustrated at the large chunk of his workdays spent communicating with hearing lab mates and professors, time he would have preferred spending on his scientific work.

The problem with STEM careers for the deaf and hard-of-hearing is that there are not enough ASL signs available, says Farovitch. Names, words, or phrases that don't exist in ASL must be finger spelled — the signer must form a distinct hand shape to correspond with each letter of the English alphabet, a tedious and time-consuming process. For instance, it requires 12 hand motions to spell out the word M-I-T-O-C-H-O-N-D-R-I-A. Imagine repeating those motions countless times a day.

To bust through this linguistic quagmire, Farovitch, along with a team of deaf STEM professionals, linguists, and interpreters, have been cooking up signs for terms like Anaplasma phagocytophilum, the tick-borne bacterium Farovitch studies. The sign creators are then videotaped performing the new signs. Those videos are posted on two crowd-sourcing sites, and ASL Clear.

The beauty of ASL is you can express an entire concept in a single sign, rather than by the name of a word.

"If others don't pick it up and use it, a sign goes extinct," says Farovitch. Thus far, more than 1,000 STEM terms have been developed on ASL Clear and 500 vetted and approved by the deaf STEM community, according to Jeanne Reis, project director of the ASL Clear Project, based at The Learning Center for the Deaf in Framingham, Mass.

The beauty of ASL is you can express an entire concept in a single sign, rather than by the name of a word. The signs are generally intuitive and wonderfully creative. To express "DNA" Farovitch uses two fingers of each hand touching the tips of the opposite hand; then he draws both the hands away to suggest the double helix form of the hereditary material present in most organisms.

"If you can show it, you can understand the concept better,'' says the Canadian-born scientist. "I feel I can explain science better now."

The hope is that as ASL science vocabulary expands more, deaf and hard-of-hearing students will be encouraged to pursue the STEM fields. "ASL is not just a tool; it's a language. It's a vital part of our lives," Farovitch explains through his interpreter.

The deaf community is diverse—within and beyond the sciences. Sarah Latchney, PhD, an environmental toxicologist, is among the approximately 90 percent of deaf people born to hearing parents. Hers made sure she learned ASL at an early age but they also sent Latchney to a speech therapist to learn to speak and read lips. Latchney is so adept at both that she can communicate one-on-one with a hearing person without an interpreter.

Like Favoritch, Latchney has developed "conceptually accurate" ASL signs but she has no plans to post them on the crowd-sourcing sites. "I don't want to fix [my signs]; it works for me," she explains.

Young scientists like Farovitch and Latchney stress the need for interpreters who are knowledgeable about science. "When I give a presentation I'm a nervous wreck that I'll have an interpreter who may not have a science background," Latchney explains. "Many times what I've [signed] has been misinterpreted; either my interpreter didn't understand the question or didn't frame it correctly."

To enlarge the pool of science-savvy interpreters, the University of Rochester will offer a new masters degree program: ASL Interpreting in Medicine and Science (AIMS), which will train interpreters who have a strong background in the biological sciences.

Since the Americans with Disabilities Act was enacted in 1990, opportunities in higher education for deaf and hard-of-hearing students have opened up in the form of federally funded financial aid and the creation of student disability services on many college campuses. Still, only 18 percent of deaf adults have graduated from college, compared to 33 percent of the general population, according to a survey by the U.S. Census Bureau in 2015.

The University of Rochester and the Rochester Institute of Technology, home to NTID, have jointly created two programs to increase the representation of deaf and hard-of-hearing professionals in the sciences. The Rochester Bridges to the Doctorate Program, which Farovitch is enrolled in, prepares deaf scholars for biomedical PhD programs. The Rochester Postdoctoral Partnership readies deaf postdoctoral scientists to successfully attain academic research and teaching careers. Both programs are funded by the National Institutes of Science. In the last five years, the University of Rochester has gone from zero deaf postdoctoral and graduate students to nine.

"Deafness is not a problem, it's just a difference."

It makes sense for these two private universities to support strong programs for the deaf: Rochester has the highest per capita population of deaf or hard-of-hearing adults younger than 65 in the nation, according to the U.S. Census. According to the U.S. Department of Education, there are about 136,000 post-secondary level students who are deaf or hard of hearing.

"Deafness is not a problem, it's just a difference," says Farovitch. "We just need a different way to communicate. It doesn't mean we require more work."

Donna Jackel
Donna Jackel is a freelance journalist who specializes in mental health, animal welfare, and social justice. Her articles have appeared in: Texas Highways, CityLab, BBC Travel, The Chronicle of Higher Education, Lilith, The Chicago Tribune, Yes! Magazine and other national and regional publications. She is a member of the American Society of Journalists and Authors.
Get our top stories twice a month
Follow us on

David Kurtz making DNA sequencing libraries in his lab.

Photo credit: Florian Scherer

When David M. Kurtz was doing his clinical fellowship at Stanford University Medical Center in 2009, specializing in lymphoma treatments, he found himself grappling with a question no one could answer. A typical regimen for these blood cancers prescribed six cycles of chemotherapy, but no one knew why. "The number seemed to be drawn out of a hat," Kurtz says. Some patients felt much better after just two doses, but had to endure the toxic effects of the entire course. For some elderly patients, the side effects of chemo are so harsh, they alone can kill. Others appeared to be cancer-free on the CT scans after the requisite six but then succumbed to it months later.

"Anecdotally, one patient decided to stop therapy after one dose because he felt it was so toxic that he opted for hospice instead," says Kurtz, now an oncologist at the center. "Five years down the road, he was alive and well. For him, just one dose was enough." Others would return for their one-year check up and find that their tumors grew back. Kurtz felt that while CT scans and MRIs were powerful tools, they weren't perfect ones. They couldn't tell him if there were any cancer cells left, stealthily waiting to germinate again. The scans only showed the tumor once it was back.

Blood cancers claim about 68,000 people a year, with a new diagnosis made about every three minutes, according to the Leukemia Research Foundation. For patients with B-cell lymphoma, which Kurtz focuses on, the survival chances are better than for some others. About 60 percent are cured, but the remaining 40 percent will relapse—possibly because they will have a negative CT scan, but still harbor malignant cells. "You can't see this on imaging," says Michael Green, who also treats blood cancers at University of Texas MD Anderson Medical Center.

Keep Reading Keep Reading
Lina Zeldovich
Lina Zeldovich has written about science, medicine and technology for Scientific American, Reader’s Digest, Mosaic Science and other publications. She’s an alumna of Columbia University School of Journalism and the author of the upcoming book, The Other Dark Matter: The Science and Business of Turning Waste into Wealth, from Chicago University Press. You can find her on and @linazeldovich.

Reporter Michaela Haas takes Aptera's Sol car out for a test drive in San Diego, Calif.

Courtesy Haas

The white two-seater car that rolls down the street in the Sorrento Valley of San Diego looks like a futuristic batmobile, with its long aerodynamic tail and curved underbelly. Called 'Sol' (Spanish for "sun"), it runs solely on solar and could be the future of green cars. Its maker, the California startup Aptera, has announced the production of Sol, the world's first mass-produced solar vehicle, by the end of this year. Aptera co-founder Chris Anthony points to the sky as he says, "On this sunny California day, there is ample fuel. You never need to charge the car."

If you live in a sunny state like California or Florida, you might never need to plug in the streamlined Sol because the solar panels recharge while driving and parked. Its 60-mile range is more than the average commuter needs. For cloudy weather, battery packs can be recharged electronically for a range of up to 1,000 miles. The ultra-aerodynamic shape made of lightweight materials such as carbon, Kevlar, and hemp makes the Sol four times more energy-efficient than a Tesla, according to Aptera. "The material is seven times stronger than steel and even survives hail or an angry ex-girlfriend," Anthony promises.

Keep Reading Keep Reading
Michaela Haas
Michaela Haas, PhD, is an award-winning reporter and author, most recently of Bouncing Forward: The Art and Science of Cultivating Resilience (Atria). Her work has been published in the New York Times, Mother Jones, the Huffington Post, and numerous other media. Find her at and Twitter @MichaelaHaas!