Your Body Has This Astonishing Magical Power

A fierce champion fighter in action, representing the incredible power of the human immune system.

(© elnariz/Fotolia)

It's vacation time. You and your family visit a country where you've never been and, in fact, your parents or grandparents had never been. You find yourself hiking beside a beautiful lake. It's a gorgeous day. You dive in. You are not alone.

How can your T cells and B cells react to a pathogen they've never seen?

In the water swim parasites, perhaps a parasite called giardia. The invader slips in through your mouth or your urinary tract. This bug is entirely new to you, and there's more. It might be new to everyone you've ever met or come into contact with. The parasite may have evolved in this setting for hundreds of thousands of years so that it's different from any giardia bug you've ever come into contact with before or that thrives in the region where you live.

How can your T cells and B cells react to a pathogen they've never seen, never knew existed, and were never inoculated against, and that you, or your doctors, in all their wisdom, could never have foreseen?

This is the infinity problem.

For years, this was the greatest mystery in immunology.

As I reported An Elegant Defense -- my book about the science of the immune system told through the lives of scientists and medical patients -- I was repeatedly struck by the profundity of this question. It is hard to overstate: how can we survive in a world with such myriad possible threats?

Matt Richtel's new book about the science of the immune system, An Elegant Defense, was published this month.

To further underscore the quandary, the immune system has to neutralize threats without killing the rest of the body. If the immune system could just kill the rest of the body too, the solution to the problem would be easy. Nuke the whole party. That obviously won't work if we are to survive. So the immune system has to be specific to the threat while also leaving most of our organism largely alone.

"God had two options," Dr. Mark Brunvand told me. "He could turn us into ten-foot-tall pimples, or he could give us the power to fight 10 to the 12th power different pathogens." That's a trillion potential bad actors. Why pimples? Pimples are filled with white blood cells, which are rich with immune system cells. In short, you could be a gigantic immune system and nothing else, or you could have some kind of secret power that allowed you to have all the other attributes of a human being—brain, heart, organs, limbs—and still somehow magically be able to fight infinite pathogens.

Dr. Brunvand is a retired Denver oncologist, one of the many medical authorities in the book – from wizened T-cell innovator Dr. Jacques Miller, to the finder of fever, Dr. Charles Dinarello, to his eminence Dr. Anthony Fauci at the National Institutes of Health to newly minted Nobel-Prize winner Jim Allison.

In the case of Dr. Brunvand, the oncologist also is integral to one of the book's narratives, a remarkable story of a friend of mine named Jason. Four years ago, he suffered late, late stage cancer, with 15 pounds of lymphoma growing in his back, and his oncologist put him into hospice. Then Jason became one of the first people ever to take an immunotherapy drug for lymphoma and his tumors disappeared. Through Jason's story, and a handful of other fascinating tales, I showcase how the immune system works.

There are two options for creating such a powerful immune system: we could be pimples or have some other magical power.

Dr. Brunvand had posited to me that there were two options for creating such a powerful and multifaceted immune system: we could be pimples or have some other magical power. You're not a pimple. So what was the ultimate solution?

Over the years, there were a handful of well-intentioned, thoughtful theories, but they strained to account for the inexplicable ability of the body to respond to virtually anything. The theories were complex and suffered from that peculiar side effect of having terrible names—like "side-chain theory" and "template-instructive hypothesis."

This was the background when along came Susumu Tonegawa.


Tonegawa was born in 1939, in the Japanese port city of Nagoya, and was reared during the war. Lucky for him, his father was moved around in his job, and so Tonegawa grew up in smaller towns. Otherwise, he might've been in Nagoya on May 14,1944, when the United States sent nearly 550 B-29 bombers to take out key industrial sites there and destroyed huge swaths of the city.

Fifteen years later, in 1959, Tonegawa was a promising student when a professor in Kyoto told him that he should go to the United States because Japan lacked adequate graduate training in molecular biology. A clear, noteworthy phenomenon was taking shape: Immunology and its greatest discoveries were an international affair, discoveries made through cooperation among the world's best brains, national boundaries be damned.

Tonegawa wound up at the University of California at San Diego, at a lab in La Jolla, "the beautiful Southern California town near the Mexican border." There, in multicultural paradise, he received his PhD, studying in the lab of Masaki Hayashi and then moved to the lab of Renato Dulbecco. Dr. Dulbecco was born in Italy, got a medical degree, was recruited to serve in World War II, where he fought the French and then, when Italian fascism collapsed, joined the resistance and fought the Germans. (Eventually, he came to the United States and in 1975 won a Nobel Prize for using molecular biology to show how viruses can lead, in some cases, to tumor creation.)

In 1970, Tonegawa—now armed with a PhD—faced his own immigration conundrum. His visa was set to expire by the end of 1970, and he was forced to leave the country for two years before he could return. He found a job in Switzerland at the Basel Institute for Immunology.


Around this time, new technology had emerged that allowed scientists to isolate different segments of an organism's genetic material. The technology allowed segments to be "cut" and then compared to one another. A truism emerged: If a researcher took one organism's genome and cut precisely the same segment over and over again, the resulting fragment of genetic material would match each time.

When you jump in that lake in a foreign land, filled with alien bugs, your body, astonishingly, well might have a defender that recognizes the creature.

This might sound obvious, but it was key to defining the consistency of an organism's genetic structure.

Then Tonegawa found the anomaly.

He was cutting segments of genetic material from within B cells. He began by comparing the segments from immature B cells, meaning, immune system cells that were still developing. When he compared identical segments in these cells, they yielded, predictably, identical fragments of genetic material. That was consistent with all previous knowledge.

But when he compared the segments to identical regions in mature B cells, the result was entirely different. This was new, distinct from any other cell or organism that had been studied. The underlying genetic material had changed.

"It was a big revelation," said Ruslan Medzhitov, a Yale scholar. "What he found, and is currently known, is that the antibody-encoding genes are unlike all other normal genes."

The antibody-encoding genes are unlike all other normal genes.

Yes, I used italics. Your immune system's incredible capabilities begin from a remarkable twist of genetics. When your immune system takes shape, it scrambles itself into millions of different combinations, random mixtures and blends. It is a kind of genetic Big Bang that creates inside your body all kinds of defenders aimed at recognizing all kinds of alien life forms.

So when you jump in that lake in a foreign land, filled with alien bugs, your body, astonishingly, well might have a defender that recognizes the creature.

Light the fireworks and send down the streamers!

As Tonegawa explored further, he discovered a pattern that described the differences between immature B cells and mature ones. Each of them shared key genetic material with one major variance: In the immature B cell, that crucial genetic material was mixed in with, and separated by, a whole array of other genetic material.

As the B cell matured into a fully functioning immune system cell, much of the genetic material dropped out. And not just that: In each maturing B cell, different material dropped out. What had begun as a vast array of genetic coding sharpened into this particular, even unique, strand of genetic material.


This is complex stuff. But a pep talk: This section is as deep and important as any in describing the wonder of the human body. Dear reader, please soldier on!


Researchers, who, eventually, sought a handy way to define the nature of the genetic change to the material of genes, labeled the key genetic material in an antibody with three initials: V, D, and J.

The letter V stands for variable. The variable part of the genetic material is drawn from hundreds of genes.

D stands for diversity, which is drawn from a pool of dozens of different genes.

And J is drawn from another half dozen genes.

In an immature B cell, the strands of V, D, and J material are in separate groupings, and they are separated by a relatively massive distance. But as the cell matures, a single, random copy of V remains, along with a single each of D and J, and all the other intervening material drops out. As I began to grasp this, it helped me to picture a line of genetic material stretching many miles. Suddenly, three random pieces step forward, and the rest drops away.

The combination of these genetic slices, grouped and condensed into a single cell, creates, by the power of math, trillions of different and virtually unique genetic codes.

In anticipation of threats from the unfathomable, our defenses evolved as infinity machines.

Or if you prefer a different metaphor, the body has randomly made hundreds of millions of different keys, or antibodies. Each fits a lock that is located on a pathogen. Many of these antibodies are combined such that they are alien genetic material—at least to us—and their locks will never surface in the human body. Some may not exist in the entire universe. Our bodies have come stocked with keys to the rarest and even unimaginable locks, forms of evil the world has not yet seen, but someday might. In anticipation of threats from the unfathomable, our defenses evolved as infinity machines.

"The discoveries of Tonegawa explain the genetic background allowing the enormous richness of variation among antibodies," the Nobel Prize committee wrote in its award to him years later, in 1987. "Beyond deeper knowledge of the basic structure of the immune system these discoveries will have importance in improving immunological therapy of different kinds, such as, for instance, the enforcement of vaccinations and inhibition of reactions during transplantation. Another area of importance is those diseases where the immune defense of the individual now attacks the body's own tissues, the so-called autoimmune diseases."

Indeed, these revelations are part of a period of time it would be fair to call the era of immunology, stretching from the middle of the 20th century to the present. During that period, we've come from sheer ignorance of the most basic aspects of the immune system to now being able to tinker under the hood with monoclonal antibodies and other therapies. And we are, in many ways, just at the beginning.

Matt Richtel
Matt Richtel is a best-selling author and Pulitzer Prize-winning reporter for the New York Times based in San Francisco. He joined the staff in 2000, and his work has focused on science, technology, business and narrative-driven story telling around these issues, including cancer immunotherapy, electronic cigarettes, and the impact of heavy technology use on behavior and the brain. In 2010 he won the Pulitzer Prize for National Reporting, for his series of articles on the hazardous use of cell phones, computers and other devices while driving. His non-fiction thriller A Deadly Wandering explored these issues, was a New York Times bestseller. He is also the author of four acclaimed science and tech-centric thrillers, including, most recently, The Doomsday Equation.
Get our top stories twice a month
Follow us on

Reporter Michaela Haas takes Aptera's Sol car out for a test drive in San Diego, Calif.

Courtesy Haas

The white two-seater car that rolls down the street in the Sorrento Valley of San Diego looks like a futuristic batmobile, with its long aerodynamic tail and curved underbelly. Called 'Sol' (Spanish for "sun"), it runs solely on solar and could be the future of green cars. Its maker, the California startup Aptera, has announced the production of Sol, the world's first mass-produced solar vehicle, by the end of this year. Aptera co-founder Chris Anthony points to the sky as he says, "On this sunny California day, there is ample fuel. You never need to charge the car."

If you live in a sunny state like California or Florida, you might never need to plug in the streamlined Sol because the solar panels recharge while driving and parked. Its 60-mile range is more than the average commuter needs. For cloudy weather, battery packs can be recharged electronically for a range of up to 1,000 miles. The ultra-aerodynamic shape made of lightweight materials such as carbon, Kevlar, and hemp makes the Sol four times more energy-efficient than a Tesla, according to Aptera. "The material is seven times stronger than steel and even survives hail or an angry ex-girlfriend," Anthony promises.

Keep Reading Keep Reading
Michaela Haas
Michaela Haas, PhD, is an award-winning reporter and author, most recently of Bouncing Forward: The Art and Science of Cultivating Resilience (Atria). Her work has been published in the New York Times, Mother Jones, the Huffington Post, and numerous other media. Find her at and Twitter @MichaelaHaas!

A stock image of a home test for COVID-19.

Photo by Annie Spratt on Unsplash

Last summer, when fast and cheap Covid tests were in high demand and governments were struggling to manufacture and distribute them, a group of independent scientists working together had a bit of a breakthrough.

Working on the Just One Giant Lab platform, an online community that serves as a kind of clearing house for open science researchers to find each other and work together, they managed to create a simple, one-hour Covid test that anyone could take at home with just a cup of hot water. The group tested it across a network of home and professional laboratories before being listed as a semi-finalist team for the XPrize, a competition that rewards innovative solutions-based projects. Then, the group hit a wall: they couldn't commercialize the test.

Keep Reading Keep Reading
Christi Guerrini and Alex Pearlman

Christi Guerrini, JD, MPH studies biomedical citizen science and is an Associate Professor at Baylor College of Medicine. Alex Pearlman, MA, is a science journalist and bioethicist who writes about emerging issues in biotechnology. They have recently launched, a place for discussion about nontraditional research.