Will COVID-19 Pave the Way For Home-Based Precision Medicine?

n artist rendering of a "smart toilet" that gathers biometric data to monitor a person's health in real time.

(© arsenypopel/Adobe)

It looks like an ordinary toilet but it is anything but. The "smart toilet" is the diagnostic tool of the future, equipped with cameras that take snapshots of the users and their waste, motion sensors to analyze what's inside the urine and stool samples, and software that automatically sends data to a secure, cloud-based system that can be easily accessed by your family doctor.

"It's a way of doing community surveillance. If there is a second wave of infections in the future, we'll know right away."

Using urine "dipstick tests" similar to the home pregnancy strips, the smart toilet can detect certain proteins, immune system biomarkers and blood cells that indicate the presence of such diseases as infections, bladder cancer, and kidney failure.

The rationale behind this invention is that some of the best ways of detecting what's going on in our bodies is by analyzing the substances we excrete every day, our sweat, urine, saliva and yes, our feces. Instead of getting sporadic snapshots from doctor's visits once or twice a year, the smart toilet provides continuous monitoring of our health 24/7, so we can catch the tell-tale molecular signature of illnesses at their earliest and most treatable stages. A brainchild of Stanford University researchers, they're now working to add a COVID-19 detection component to their suite of technologies—corona virus particles can be spotted in stool samples—and hope to have the system available within the year.

"We can connect the toilet system to cell phones so we'll know the results within 30 minutes," says Seung-min Park, a lead investigator on the research team that devised this technology and a senior research scientist at the Stanford University School of Medicine. "The beauty of this technology is that it can continuously monitor even after this pandemic is over. It's a way of doing community surveillance. If there is a second wave of infections in the future, we'll know right away."

Experts believe that the COVID-19 pandemic will accelerate the widespread acceptance of in-home diagnostic tools such as this. "Shock events" like pandemics can be catalysts for sweeping changes in society, history shows us. The Black Death marked the end of feudalism and ushered in the Renaissance while the aftershocks of the Great Depression and two world wars in the 20th century led to the social safety net of the New Deal and NATO and the European Union. COVID-19 could fundamentally alter the way we deliver healthcare, abandoning the outdated 20th century brick and mortar fee-for-service model in favor of digital medicine. At-home diagnostics may be the leading edge of this seismic shift and the pandemic could accelerate the product innovations that allow for home-based medical screening.

"That's the silver lining to this devastation," says Dr. Leslie Saxon, executive director of the USC Center for Body Computing at the Keck School of Medicine in Los Angeles. As an interventional cardiologist, Saxon has spent her career devising and refining the implantable and wearable wireless devices that are used to treat and diagnose heart conditions and prevent sudden death. "This will open up innovation—research has been stymied by a lack of imagination and marriage to an antiquated model," she adds. "There are already signs this is happening—relaxing state laws about licensure, allowing physicians to deliver health care in non-traditional ways. That's a real sea change and will completely democratize medical information and diagnostic testing."

Ironically, diagnostics have long been a step-child of modern medicine, even though accurate and timely diagnostics play a crucial role in disease prevention, detection and management. "The delivery of health care has proceeded for decades with a blind spot: diagnostic errors—inaccurate or delayed diagnoses—persist throughout all settings of care and continue to harm an unacceptable number of patients," according to a 2015 National Academy of Medicine report. That same report found as many as one out of five adverse events in the hospital result from these errors and they contribute to 10 percent of all patient deaths.

The pandemic should alter the diagnostic landscape. We already have a wealth of wearable and implantable devices, like glucose sensors to monitor blood sugar levels for diabetics, Apple's smart watch, electrocardiogram devices that can detect heart arrythmias, and heart pacemakers.

The Food and Drug Administration is working closely with in-home test developers to make accurate COVID-19 diagnostic tools readily available and has so far greenlighted three at-home collection test kits. Two, LabCorp's and Everlywell's, use nasal swabs to take samples. The third one is a spit test, using saliva samples, that was devised by a Rutgers University laboratory in partnership with Spectrum Solutions and Accurate Diagnostic Labs.

The only way to safely reopen is through large scale testing, but hospitals and doctors' offices are no longer the safest places.

In fact, DIY diagnostic company Everlywell, an Austin, Texas- based digital health company, already offers more than 30 at-home kits for everything from fertility to food sensitivity tests. Typically, consumers collect a saliva or finger-prick blood sample, dispatch it in a pre-paid shipping envelope to a laboratory, and a physician will review the results and send a report to consumers' smartphones.

Thanks to advances in technology, samples taken at home can now be preserved long enough to arrive intact at diagnostic laboratories. The key is showing the agency "transport and shipping don't change or interfere with the integrity of the samples," says Dr. Frank Ong, Everlywell's chief medical and scientific officer.

Ong is keenly aware of the importance of saturation testing because of the lessons learned by colleagues fighting the SARS pandemic in his family's native Taiwan in 2003. "In the beginning, doctors didn't know what they were dealing with and didn't protect themselves adequately," he says. "But over two years, they learned the hard way that there needs to be enough testing, contact tracing of those who have been exposed, and isolation of people who test positive. The value of at-home testing is that it can be done on the kind of broad basis that needs to happen for our country to get back to work."

Because of the pandemic, new policies have removed some of the barriers that impeded the widespread adoption of home-based diagnostics and telemedicine. Physicians can now practice across state lines, get reimbursed for telemedicine visits and use FaceTime to communicate with their patients, which had long been considered taboo because of privacy issues. Doctors and patients are becoming more comfortable and realizing the convenience and benefits of being able to do these things virtually.

Added to this, the only way to safely reopen for business without triggering a second and perhaps even more deadly wave of sickness is through large-scale testing, but hospitals and doctors' offices are no longer the safest places. "We don't want people sitting in a waiting room who later find out they're positive, and potentially infected everyone, including doctors and nurses," says Dr. Kavita Patel, a physician in Washington, DC who served as a policy director in the Obama White House.

In-home testing avoids the risks of direct exposure to the virus for both patients and health care professionals, who can dispense with cumbersome protective gear to take samples, and also enables people without reliable transportation or child-care to learn their status. "At home testing can be a critical component of our country's overall testing strategy," says Dr. Shantanu Nundy, chief medical officer at Accolade Health and on the faculty of the Milken Institute School of Public Health at George Washington University. "Once we're back at work, we need to be much more targeted, and have much more access to data and controlling those outbreaks as tightly as possible. The best way to do that is by leapfrogging clinics and being able to deliver tests at home for people who are disenfranchised by the current system."

In the not-too-distant future, in-home diagnostics could be a key component of precision medicine, which is customized care tailored specifically to each patient's individual needs. Like Stanford's smart toilet prototype, these ongoing surveillance tools will gather health data, ranging from exposures to toxins and pollutions in the environment to biochemical activity, like rising blood pressure, signs of inflammation, failing kidneys or tiny cancerous tumors, and provide continuous real-time information.

"These can be deeply personalized and enabled by smart phones, sensors and artificial intelligence," says USC's Leslie Saxon. "We'll be seeing the floodgates opening to patients accessing medical services through the same devices that they access other things, and leveraging these tools for our health and to fine tune disease management in a model of care that is digitally enabled."

[Editor's Note: This article was originally published on June 8th, 2020 as part of a standalone magazine called GOOD10: The Pandemic Issue. Produced as a partnership among LeapsMag, The Aspen Institute, and GOOD, the magazine is available for free online.]

Linda Marsa
Linda Marsa is a contributing editor at Discover, a former Los Angeles Times reporter and author of Fevered: Why a Hotter Planet Will Harm Our Health and How We Can Save Ourselves (Rodale, 2013), which the New York Times called “gripping to read.” Her work has been anthologized in The Best American Science Writing, and she has written for numerous publications, including Newsweek, U.S. News & World Report, Nautilus, Men’s Journal, Playboy, Pacific Standard and Aeon.
Get our top stories twice a month
Follow us on


Reporter Michaela Haas takes Aptera's Sol car out for a test drive in San Diego, Calif.

Courtesy Haas

The white two-seater car that rolls down the street in the Sorrento Valley of San Diego looks like a futuristic batmobile, with its long aerodynamic tail and curved underbelly. Called 'Sol' (Spanish for "sun"), it runs solely on solar and could be the future of green cars. Its maker, the California startup Aptera, has announced the production of Sol, the world's first mass-produced solar vehicle, by the end of this year. Aptera co-founder Chris Anthony points to the sky as he says, "On this sunny California day, there is ample fuel. You never need to charge the car."

If you live in a sunny state like California or Florida, you might never need to plug in the streamlined Sol because the solar panels recharge while driving and parked. Its 60-mile range is more than the average commuter needs. For cloudy weather, battery packs can be recharged electronically for a range of up to 1,000 miles. The ultra-aerodynamic shape made of lightweight materials such as carbon, Kevlar, and hemp makes the Sol four times more energy-efficient than a Tesla, according to Aptera. "The material is seven times stronger than steel and even survives hail or an angry ex-girlfriend," Anthony promises.

Keep Reading Keep Reading
Michaela Haas
Michaela Haas, PhD, is an award-winning reporter and author, most recently of Bouncing Forward: The Art and Science of Cultivating Resilience (Atria). Her work has been published in the New York Times, Mother Jones, the Huffington Post, and numerous other media. Find her at www.MichaelaHaas.com and Twitter @MichaelaHaas!

A stock image of a home test for COVID-19.

Photo by Annie Spratt on Unsplash

Last summer, when fast and cheap Covid tests were in high demand and governments were struggling to manufacture and distribute them, a group of independent scientists working together had a bit of a breakthrough.

Working on the Just One Giant Lab platform, an online community that serves as a kind of clearing house for open science researchers to find each other and work together, they managed to create a simple, one-hour Covid test that anyone could take at home with just a cup of hot water. The group tested it across a network of home and professional laboratories before being listed as a semi-finalist team for the XPrize, a competition that rewards innovative solutions-based projects. Then, the group hit a wall: they couldn't commercialize the test.

Keep Reading Keep Reading
Christi Guerrini and Alex Pearlman

Christi Guerrini, JD, MPH studies biomedical citizen science and is an Associate Professor at Baylor College of Medicine. Alex Pearlman, MA, is a science journalist and bioethicist who writes about emerging issues in biotechnology. They have recently launched outlawbio.org, a place for discussion about nontraditional research.