Why the Pope Should Officially Embrace Biotechnology

Pope Francis processing into Mass at St. Peter's Square.

(© f11photo/Fotolia)


[Editor's Note: This essay is in response to our current Big Question series: "How can the religious and scientific communities work together to foster a culture that is equipped to face humanity's biggest challenges?"]

In May 2015, Pope Francis issued an encyclical with the subtitle "On Care for Our Common Home." The letter addressed various environmental issues, such as pollution and climate change, and it reminded all of us that we are to steward the Earth, not plunder it.

Without question, biotechnology has saved the lives of millions – perhaps billions – of people.

The Pope's missive demonstrates that he is both theologically sound and scientifically literate, a very rare combination. That is why he should now author an encyclical urging the world to embrace the life-giving promise of biotechnology.

Without question, biotechnology has saved the lives of millions – perhaps billions – of people. Arguably, vaccines were the most important invention in the history of mankind. It is thought that, in the 20th century alone, at least 300 million people were killed by smallpox. Today, the number is zero, thanks to vaccination. Other killers, such as measles, diphtheria, meningitis, and diarrhea, are kept at bay because of vaccines.

Biotechnology has also saved the lives of diabetics. At one time, insulin was extracted from pig pancreases, and there were fears that we would run out of it. Then, in the 1970s, crucial advances in biotechnology allowed for the gene that encodes human insulin to be expressed in bacteria. Today, diabetics can get extremely pure insulin thanks to this feat of genetic modification.

Likewise, genetic modification has improved the environment and the lives of farmers all over the world, none more so than those living in developing countries. According to a meta-analysis published in PLoS ONE, GMOs have "reduced chemical pesticide use by 37%, increased crop yields by 22%, and increased farmer profits by 68%."

Even better, GMOs also could help improve the lives of non-farmers. In poor parts of the world, malnutrition is still extremely common. People whose diets consist mostly of rice, for example, often suffer from vitamin A deficiency, which can lead to blindness. Golden Rice, which was genetically modified to contain a vitamin A precursor, was created and given away for free in an act of humanitarianism. Other researchers have created a genetically modified cassava to help combat iron and zinc deficiencies among children in Africa.

Despite these groundbreaking advances, the public is turning against biotechnology.

Biotechnology has also helped women with mitochondrial disease bear healthy children. Children inherit their mitochondria, the powerhouses of our cells, solely from their mothers. Mitochondrial defects can have devastating health consequences. Using what is colloquially called the "three-parent embryo technique," a healthy woman donates an egg. The nucleus of that egg is removed, and that of the mother-to-be is put in its place. Then, the egg is fertilized using conventional in vitro fertilization. In April 2016, the world's first baby was born using this technique.

Yet, despite these groundbreaking advances, the public is turning against biotechnology. Across America and Europe, anti-vaccine activists have helped usher in a resurgence of entirely preventable diseases, such as measles. Anti-GMO activists have blocked the implementation of Golden Rice. And other activists decry reproductive technology as "playing God."

Nonsense. These technologies improve overall welfare and save lives. Those laudable goals are shared by all the world's major religions as part of their efforts to improve the human condition. That is why it is vitally important, if science is to succeed in eradicating illness, that it gets a full-throated endorsement from powerful religious leaders.

In his 2015 encyclical, Pope Francis wrote:

Any technical solution which science claims to offer will be powerless to solve the serious problems of our world if humanity loses its compass, if we lose sight of the great motivations which make it possible for us to live in harmony, to make sacrifices and to treat others well.

He is correct. Indeed, when people are protesting life-saving vaccines, we have lost not only our moral compass but our intellect, too.

Imagine the impact he could have if Pope Francis issued an encyclical titled "On Protecting Our Most Vulnerable." He could explain that some children, stricken with cancer or suffering from an immunological disease, are unable to receive vaccines. Therefore, we all have a moral duty to be vaccinated in order to protect them through herd immunity.

Or imagine the potential impact of an encyclical titled "On Feeding the World," in which the Pope explained that rich countries have an obligation to poorer ones to feed them by all means necessary, including the use of biotechnology. If Muslim, Buddhist, and Hindu scholars throughout Asia and Africa also embraced the message, its impact could be multiplied.

In order to be successful, science needs religion; in order to be practical, religion needs science.

In order to be successful, science needs religion; in order to be practical, religion needs science.

Unfortunately, in discussions of the relationship between science and religion, we too often focus on the few areas in which they conflict. But this misses a great opportunity. By combining technological advances with moral authority, science and religion can work together to save the world.

[Ed. Note: Don't miss the other perspectives in this Big Question series, from a Rabbi/M.D. and a Reverend/molecular geneticist.]

Alex Berezow
Dr. Alex Berezow is a science writer, a U.S./European political affairs writer, and Senior Fellow of Biomedical Science at the American Council on Science and Health. Formerly, he was founding editor of RealClearScience. He has published in numerous outlets, such as BBC, CNN, Wall Street Journal, The Economist, and USA Today, where he serves on the Board of Contributors. He is the author of two books, Little Black Book of Junk Science and Science Left Behind, and holds a PhD in microbiology.
Get our top stories twice a month
Follow us on
Brain Cancer Chromosomes. Chromosomes prepared from a malignant glioblastoma visualized by spectral karyotyping (SKY) reveal an enormous degree of chromosomal instability -- a hallmark of cancer. Created by Thomas Ried, 2014

Glioblastoma is an aggressive and deadly brain cancer, causing more than 10,000 deaths in the US per year. In the last 30 years there has only been limited improvement in the survival rate despite advances in radiation therapy and chemotherapy. Today the typical survival rate is just 14 months and that extra time is spent suffering from the adverse and often brutal effects of radiation and chemotherapy.

Scientists are trying to design more effective treatments for glioblastoma with fewer side effects. Now, a team at the Department of Neurosurgery at Houston Methodist Hospital has created a magnetic helmet-based treatment called oncomagnetic therapy: a promising non-invasive treatment for shrinking cancerous tumors. In the first patient tried, the device was able to reduce the tumor of a glioblastoma patient by 31%. The researchers caution, however, that much more research is needed to determine its safety and effectiveness.

Keep Reading Keep Reading
Sarah Philip
Sarah Philip is a London-based freelance journalist who writes about science, film and TV. You can follow her on Twitter @sarahph1lip.

Astronaut and Expedition 64 Flight Engineer Soichi Noguchi of the Japan Aerospace Exploration Agency displays Extra Dwarf Pak Choi plants growing aboard the International Space Station. The plants were grown for the Veggie study which is exploring space agriculture as a way to sustain astronauts on future missions to the Moon or Mars.

Johnson Space Center/NASA

Astronauts at the International Space Station today depend on pre-packaged, freeze-dried food, plus some fresh produce thanks to regular resupply missions. This supply chain, however, will not be available on trips further out, such as the moon or Mars. So what are astronauts on long missions going to eat?

Going by the options available now, says Christel Paille, an engineer at the European Space Agency, a lunar expedition is likely to have only dehydrated foods. “So no more fresh product, and a limited amount of already hydrated product in cans.”

For the Mars mission, the situation is a bit more complex, she says. Prepackaged food could still constitute most of their food, “but combined with [on site] production of certain food products…to get them fresh.” A Mars mission isn’t right around the corner, but scientists are currently working on solutions for how to feed those astronauts. A number of boundary-pushing efforts are now underway.

Keep Reading Keep Reading
Payal Dhar
Payal is a writer based in New Delhi who has been covering science, technology, and society since 1998.