“Virtual Biopsies” May Soon Make Some Invasive Tests Unnecessary

Patient Dan Chessin met recently in Dr. Lee Ponsky's office at University Hospitals, discussing Chessin's history with prostate cancer.
At his son's college graduation in 2017, Dan Chessin felt "terribly uncomfortable" sitting in the stadium. The bouts of pain persisted, and after months of monitoring, a urologist took biopsies of suspicious areas in his prostate.
This innovation may enhance diagnostic precision and promptness, but it also brings ethical concerns to the forefront.
"In my case, the biopsies came out cancerous," says Chessin, 60, who underwent robotic surgery for intermediate-grade prostate cancer at University Hospitals Cleveland Medical Center.
Although he needed a biopsy, as most patients today do, advances in radiologic technology may make such invasive measures unnecessary in the future. Researchers are developing better imaging techniques and algorithms—a form of computer science called artificial intelligence, in which machines learn and execute tasks that typically require human brain power.
This innovation may enhance diagnostic precision and promptness. But it also brings ethical concerns to the forefront of the conversation, highlighting the potential for invasion of privacy, unequal patient access, and less physician involvement in patient care.
A National Academy of Medicine Special Publication, released in December, emphasizes that setting industry-wide standards for use in patient care is essential to AI's responsible and transparent implementation as the industry grapples with voluminous quantities of data. The technology should be viewed as a tool to supplement decision-making by highly trained professionals, not to replace it.
MRI--a test that uses powerful magnets, radio waves, and a computer to take detailed images inside the body--has become highly accurate in detecting aggressive prostate cancer, but its reliability is more limited in identifying low and intermediate grades of malignancy. That's why Chessin opted to have his prostate removed rather than take the chance of missing anything more suspicious that could develop.
His urologist, Lee Ponsky, says AI's most significant impact is yet to come. He hopes University Hospitals Cleveland Medical Center's collaboration with research scientists at its academic affiliate, Case Western Reserve University, will lead to the invention of a virtual biopsy.
A National Cancer Institute five-year grant is funding the project, launched in 2017, to develop a combined MRI and computerized tool to support more accurate detection and grading of prostate cancer. Such a tool would be "the closest to a crystal ball that we can get," says Ponsky, professor and chairman of the Urology Institute.
In situations where AI has guided diagnostics, radiologists' interpretations of breast, lung, and prostate lesions have improved as much as 25 percent, says Anant Madabhushi, a biomedical engineer and director of the Center for Computational Imaging and Personalized Diagnostics at Case Western Reserve, who is collaborating with Ponsky. "AI is very nascent," Madabhushi says, estimating that fewer than 10 percent of niche academic medical centers have used it. "We are still optimizing and validating the AI and virtual biopsy technology."
In October, several North American and European professional organizations of radiologists, imaging informaticists, and medical physicists released a joint statement on the ethics of AI. "Ultimate responsibility and accountability for AI remains with its human designers and operators for the foreseeable future," reads the statement, published in the Journal of the American College of Radiology. "The radiology community should start now to develop codes of ethics and practice for AI that promote any use that helps patients and the common good and should block use of radiology data and algorithms for financial gain without those two attributes."
Overreliance on new technology also poses concern when humans "outsource the process to a machine."
The statement's leader author, radiologist J. Raymond Geis, says "there's no question" that machines equipped with artificial intelligence "can extract more information than two human eyes" by spotting very subtle patterns in pixels. Yet, such nuances are "only part of the bigger picture of taking care of a patient," says Geis, a senior scientist with the American College of Radiology's Data Science Institute. "We have to be able to combine that with knowledge of what those pixels mean."
Setting ethical standards is high on all physicians' radar because the intricacies of each patient's medical record are factored into the computer's algorithm, which, in turn, may be used to help interpret other patients' scans, says radiologist Frank Rybicki, vice chair of operations and quality at the University of Cincinnati's department of radiology. Although obtaining patients' informed consent in writing is currently necessary, ethical dilemmas arise if and when patients have a change of heart about the use of their private health information. It is likely that removing individual data may be possible for some algorithms but not others, Rybicki says.
The information is de-identified to protect patient privacy. Using it to advance research is akin to analyzing human tissue removed in surgical procedures with the goal of discovering new medicines to fight disease, says Maryellen Giger, a University of Chicago medical physicist who studies computer-aided diagnosis in cancers of the breast, lung, and prostate, as well as bone diseases. Physicians who become adept at using AI to augment their interpretation of imaging will be ahead of the curve, she says.
As with other new discoveries, patient access and equality come into play. While AI appears to "have potential to improve over human performance in certain contexts," an algorithm's design may result in greater accuracy for certain groups of patients, says Lucia M. Rafanelli, a political theorist at The George Washington University. This "could have a disproportionately bad impact on one segment of the population."
Overreliance on new technology also poses concern when humans "outsource the process to a machine." Over time, they may cease developing and refining the skills they used before the invention became available, said Chloe Bakalar, a visiting research collaborator at Princeton University's Center for Information Technology Policy.
"AI is a paradigm shift with magic power and great potential."
Striking the right balance in the rollout of the technology is key. Rushing to integrate AI in clinical practice may cause harm, whereas holding back too long could undermine its ability to be helpful. Proper governance becomes paramount. "AI is a paradigm shift with magic power and great potential," says Ge Wang, a biomedical imaging professor at Rensselaer Polytechnic Institute in Troy, New York. "It is only ethical to develop it proactively, validate it rigorously, regulate it systematically, and optimize it as time goes by in a healthy ecosystem."
Podcast: The Friday Five weekly roundup in health research
Researchers are making progress on a vaccine for Lyme disease, sex differences in cancer, new research on reducing your risk of dementia with leisure activities, and more in this week's Friday Five
The Friday Five covers five stories in health research that you may have missed this week. There are plenty of controversies and troubling ethical issues in science – and we get into many of them in our online magazine – but this news roundup focuses on scientific creativity and progress to give you a therapeutic dose of inspiration headed into the weekend.
Covered in this week's Friday Five:
- Sex differences in cancer
- Promising research on a vaccine for Lyme disease
- Using a super material for brain-like devices
- Measuring your immunity to Covid
- Reducing risk of dementia with leisure activities
Matt Fuchs is the editor-in-chief of Leaps.org. He is also a contributing reporter to the Washington Post and has written for the New York Times, Time Magazine, WIRED and the Washington Post Magazine, among other outlets. Follow him on Twitter @fuchswriter.
Giving robots self-awareness as they move through space - and maybe even providing them with gene-like methods for storing rules of behavior - could be important steps toward creating more intelligent machines.
One day in recent past, scientists at Columbia University’s Creative Machines Lab set up a robotic arm inside a circle of five streaming video cameras and let the robot watch itself move, turn and twist. For about three hours the robot did exactly that—it looked at itself this way and that, like toddlers exploring themselves in a room full of mirrors. By the time the robot stopped, its internal neural network finished learning the relationship between the robot’s motor actions and the volume it occupied in its environment. In other words, the robot built a spatial self-awareness, just like humans do. “We trained its deep neural network to understand how it moved in space,” says Boyuan Chen, one of the scientists who worked on it.
For decades robots have been doing helpful tasks that are too hard, too dangerous, or physically impossible for humans to carry out themselves. Robots are ultimately superior to humans in complex calculations, following rules to a tee and repeating the same steps perfectly. But even the biggest successes for human-robot collaborations—those in manufacturing and automotive industries—still require separating the two for safety reasons. Hardwired for a limited set of tasks, industrial robots don't have the intelligence to know where their robo-parts are in space, how fast they’re moving and when they can endanger a human.
Over the past decade or so, humans have begun to expect more from robots. Engineers have been building smarter versions that can avoid obstacles, follow voice commands, respond to human speech and make simple decisions. Some of them proved invaluable in many natural and man-made disasters like earthquakes, forest fires, nuclear accidents and chemical spills. These disaster recovery robots helped clean up dangerous chemicals, looked for survivors in crumbled buildings, and ventured into radioactive areas to assess damage.
Now roboticists are going a step further, training their creations to do even better: understand their own image in space and interact with humans like humans do. Today, there are already robot-teachers like KeeKo, robot-pets like Moffin, robot-babysitters like iPal, and robotic companions for the elderly like Pepper.
But even these reasonably intelligent creations still have huge limitations, some scientists think. “There are niche applications for the current generations of robots,” says professor Anthony Zador at Cold Spring Harbor Laboratory—but they are not “generalists” who can do varied tasks all on their own, as they mostly lack the abilities to improvise, make decisions based on a multitude of facts or emotions, and adjust to rapidly changing circumstances. “We don’t have general purpose robots that can interact with the world. We’re ages away from that.”
Robotic spatial self-awareness – the achievement by the team at Columbia – is an important step toward creating more intelligent machines. Hod Lipson, professor of mechanical engineering who runs the Columbia lab, says that future robots will need this ability to assist humans better. Knowing how you look and where in space your parts are, decreases the need for human oversight. It also helps the robot to detect and compensate for damage and keep up with its own wear-and-tear. And it allows robots to realize when something is wrong with them or their parts. “We want our robots to learn and continue to grow their minds and bodies on their own,” Chen says. That’s what Zador wants too—and on a much grander level. “I want a robot who can drive my car, take my dog for a walk and have a conversation with me.”
Columbia scientists have trained a robot to become aware of its own "body," so it can map the right path to touch a ball without running into an obstacle, in this case a square.
Jane Nisselson and Yinuo Qin/ Columbia Engineering
Today’s technological advances are making some of these leaps of progress possible. One of them is the so-called Deep Learning—a method that trains artificial intelligence systems to learn and use information similar to how humans do it. Described as a machine learning method based on neural network architectures with multiple layers of processing units, Deep Learning has been used to successfully teach machines to recognize images, understand speech and even write text.
Trained by Google, one of these language machine learning geniuses, BERT, can finish sentences. Another one called GPT3, designed by San Francisco-based company OpenAI, can write little stories. Yet, both of them still make funny mistakes in their linguistic exercises that even a child wouldn’t. According to a paper published by Stanford’s Center for Research on Foundational Models, BERT seems to not understand the word “not.” When asked to fill in the word after “A robin is a __” it correctly answers “bird.” But try inserting the word “not” into that sentence (“A robin is not a __”) and BERT still completes it the same way. Similarly, in one of its stories, GPT3 wrote that if you mix a spoonful of grape juice into your cranberry juice and drink the concoction, you die. It seems that robots, and artificial intelligence systems in general, are still missing some rudimentary facts of life that humans and animals grasp naturally and effortlessly.
How does one give robots a genome? Zador has an idea. We can’t really equip machines with real biological nucleotide-based genes, but we can mimic the neuronal blueprint those genes create.
It's not exactly the robots’ fault. Compared to humans, and all other organisms that have been around for thousands or millions of years, robots are very new. They are missing out on eons of evolutionary data-building. Animals and humans are born with the ability to do certain things because they are pre-wired in them. Flies know how to fly, fish knows how to swim, cats know how to meow, and babies know how to cry. Yet, flies don’t really learn to fly, fish doesn’t learn to swim, cats don’t learn to meow, and babies don’t learn to cry—they are born able to execute such behaviors because they’re preprogrammed to do so. All that happens thanks to the millions of years of evolutions wired into their respective genomes, which give rise to the brain’s neural networks responsible for these behaviors. Robots are the newbies, missing out on that trove of information, Zador argues.
A neuroscience professor who studies how brain circuitry generates various behaviors, Zador has a different approach to developing the robotic mind. Until their creators figure out a way to imbue the bots with that information, robots will remain quite limited in their abilities. Each model will only be able to do certain things it was programmed to do, but it will never go above and beyond its original code. So Zador argues that we have to start giving robots a genome.
How does one do that? Zador has an idea. We can’t really equip machines with real biological nucleotide-based genes, but we can mimic the neuronal blueprint those genes create. Genomes lay out rules for brain development. Specifically, the genome encodes blueprints for wiring up our nervous system—the details of which neurons are connected, the strength of those connections and other specs that will later hold the information learned throughout life. “Our genomes serve as blueprints for building our nervous system and these blueprints give rise to a human brain, which contains about 100 billion neurons,” Zador says.
If you think what a genome is, he explains, it is essentially a very compact and compressed form of information storage. Conceptually, genomes are similar to CliffsNotes and other study guides. When students read these short summaries, they know about what happened in a book, without actually reading that book. And that’s how we should be designing the next generation of robots if we ever want them to act like humans, Zador says. “We should give them a set of behavioral CliffsNotes, which they can then unwrap into brain-like structures.” Robots that have such brain-like structures will acquire a set of basic rules to generate basic behaviors and use them to learn more complex ones.
Currently Zador is in the process of developing algorithms that function like simple rules that generate such behaviors. “My algorithms would write these CliffsNotes, outlining how to solve a particular problem,” he explains. “And then, the neural networks will use these CliffsNotes to figure out which ones are useful and use them in their behaviors.” That’s how all living beings operate. They use the pre-programmed info from their genetics to adapt to their changing environments and learn what’s necessary to survive and thrive in these settings.
For example, a robot’s neural network could draw from CliffsNotes with “genetic” instructions for how to be aware of its own body or learn to adjust its movements. And other, different sets of CliffsNotes may imbue it with the basics of physical safety or the fundamentals of speech.
At the moment, Zador is working on algorithms that are trying to mimic neuronal blueprints for very simple organisms—such as earthworms, which have only 302 neurons and about 7000 synapses compared to the millions we have. That’s how evolution worked, too—expanding the brains from simple creatures to more complex to the Homo Sapiens. But if it took millions of years to arrive at modern humans, how long would it take scientists to forge a robot with human intelligence? That’s a billion-dollar question. Yet, Zador is optimistic. “My hypotheses is that if you can build simple organisms that can interact with the world, then the higher level functions will not be nearly as challenging as they currently are.”