From a special food to a vaccine and gene editing, new technologies may offer solutions for cat lovers with allergies.

Photo by Pacto Visual on Unsplash

Amy Bitterman, who teaches at Rutgers Law School in Newark, gets enormous pleasure from her three mixed-breed rescue cats, Spike, Dee, and Lucy. To manage her chronically stuffy nose, three times a week she takes Allegra D, which combines the antihistamine fexofenadine with the decongestant pseudoephedrine. Amy's dog allergy is rougher--so severe that when her sister launched a business, Pet Care By Susan, from their home in Edison, New Jersey, they knew Susan would have to move elsewhere before she could board dogs. Amy has tried to visit their brother, who owns a Labrador Retriever, taking Allegra D beforehand. But she began sneezing, and then developed watery eyes and phlegm in her chest.

"It gets harder and harder to breathe," she says.

Animal lovers have long dreamed of "hypo-allergenic" cats and dogs. Although to date, there is no such thing, biotechnology is beginning to provide solutions for cat-lovers. Cats are a simpler challenge than dogs. Dog allergies involve as many as seven proteins. But up to 95 percent of people who have cat allergies--estimated at 10 to 30 percent of the population in North America and Europe--react to one protein, Fel d1. Interestingly, cats don't seem to need Fel d1. There are cats who don't produce much Fel d1 and have no known health problems.

Keep Reading Keep Reading
Temma Ehrenfeld
Temma Ehrenfeld writes about health and psychology. In a previous life, she was a reporter and editor at Newsweek and Fortune. You can see more of her work at her writing portfolio (https://temmaehrenfeld.contently.com) and contact her through her Psychology Today blog.
Get our top stories twice a month
Follow us on

Electricity is emerging as a powerful treatment for chronic ailments.

(© by Yurii Bezrukov/Adobe)


Kelly, a case manager for an insurance company, spent years battling both migraines and Crohn's, a disease in which the immune system attacks the intestines.

For many people, like Kelly, a stronger electric boost to the vagus nerve could be life-changing.

After she had her large intestine removed, her body couldn't absorb migraine medication. Last year, about twice a month, she endured migraines so bad she couldn't function. "It would go up to a ten, and I would rock, wait it out," she said. The pain might last for three days.

Then her neurologist showed her a new device, gammaCore, that tames migraines by stimulating a nerve—not medication. "I don't have to put a chemical in my body," she said. "I was thrilled."

At first, Kelly used the device at the onset of a migraine, applying electricity to her pulse at the front of her neck for six minutes. The pain peaked at about half the usual intensity--low enough, she said, that she could go to work. Four months ago, she began using the device for two minutes each night as prevention, and she hasn't had a serious migraine since.

The Department of Defense and Veterans Administration now offer gammaCore to patients, but it hasn't yet been approved by Medicare, Medicaid, or most insurers. A month of therapy costs $600 before insurance or a generous financial assistance program kicks in.

A patient uses gammaCore, a non invasive vagal nerve stimulator device that was FDA approved in November 2018, to treat her migraine.

(Photo captured from a patient video at gammacore.com)

If the poet Walt Whitman wrote "I Sing The Body Electric" today, he might get specific and point to the vagus nerve, a bundle of fibers that run from the brainstem down the neck to the heart and gut. Singing stimulates it—and for many people, like Kelly, a stronger electric boost to the nerve could be life-changing.

The mind-body connection isn't just an idea — the vagus nerve literally carries signals from the mind to the body and back. It may explain the link between childhood trauma and illnesses such as chronic pain and headaches in adults. "How is it possible that a psychological event causes pain years later?" asked Peter Staats, co-founder of electroCore, which has won approval for its new device from the Food and Drug Administration (FDA) for both migraine and cluster headaches. "There has to be a mind-body interface, and that is the vagus nerve," he said.

Scientists knew that this nerve controlled your heart rate and blood pressure, but in the past decade it has been linked to both pain and the immune system.

"Everything is gated through the vagus -- problems with the gut, the heart, and the lungs," said Chris Wilson, a researcher at Loma Linda University, in California. Wilson is studying how vagus nerve stimulation (VNS) could help pre-term babies who develop lung infections. "Nearly every one of our chronic diseases, including cancer, Alzheimer's, Parkinson's, chronic arthritis and rheumatoid arthritis, and depression and chronic pain…could benefit from an appropriate stimulator," he said.

It's unfortunate that Kelly got her device only after her large intestine was gone. SetPoint Medical, a privately held California company founded to develop electronic treatments for chronic autoimmune diseases, has announced early positive results with VNS for both Crohn's and rheumatoid arthritis.

As SetPoint's chief medical officer, David Chernoff, put it, "We're hacking into the nervous system to activate a system that is already there," an approach that, he said, could work "on many diseases that are pain- and inflammation-based." Inflammation plays a role in much modern illness, including depression and obesity. The FDA already has approved VNS for both, using surgically implanted devices similar to pacemakers. (GammaCore is external.)

The history of VNS implants goes back to 1997, when the FDA approved one for treating epilepsy and researchers noticed that it rapidly lifted depression in epileptic patients. By 2005, the agency had approved an implant for treatment-resistant depression. (Insurance companies declined to reimburse the approach and it didn't take off, but that might change: in February, the Center for Medicare and Medicaid Services asked for more data to evaluate coverage.) In 2015, the FDA approved an implant in the abdomen to regulate appetite signals and help obese people lose weight.

The link to inflammation had emerged a decade earlier, when researchers at the Feinstein Institute for Medical Research, in Manhasset, New York, demonstrated that stimulating the nerve with electricity in rats suppressed the production of cytokines, a signaling protein important in the immune system. The researchers developed a concept of a hard-wired pathway, through the vagus nerve, between the immune and nervous system. That pathway, they argued, regulates inflammation. While other researchers argue that VNS is helpful by other routes, there is clear evidence that, one way or another, it does affect immunity.

At the same time, investors are seeking alternatives to drugs.

The Feinstein rat research concluded that it took only a minute a day of stimulation and tiny amounts of energy to activate an anti-inflammatory reflex. This means you can use devices "the size of a coffee bean," said Chernoff, much less clunky than current pacemakers—and advances in electronic technology are making them possible.

At the same time, investors are seeking alternatives to drugs. "There's been a push back on drug pricing," noted Lisa Rhoads, a managing director at Easton Capital Investment Group, in New York, which supported electroCore, "and so many unintended consequences."

In 2016, the U.S. National Institutes of Health began pumping money into relevant research, in a program called "Stimulating Peripheral Activity to Relieve Conditions," which focuses on "understanding peripheral nerves — nerves that connect the brain and spinal cord to the rest of the body — and how their electrical signals control internal organ function."

GlaxoSmithKline formed Galvani Bioelectronics with Google to study miniature implants. It had already invested in Action Potential Venture Capital, in Cambridge, Massachusetts, which holds SetPoint and seven other companies "that are all targeting a nerve to treat a chronic disease," noted partner Imran Eba. "I see a future in which bioelectronics medicine is competing directly with drugs," he said.

Treating the body with electricity could bring more ease and lower costs. Many people with serious auto-immune disease, for example, have to inject themselves with drugs that cost $60,000 a year. SetPoint's implant would cost less and only need charging once a week, using a charger worn around the neck, Chernoff said. The company receives notices remotely and can monitor compliance.

Implants also allow the treatment to target a nerve precisely, which could be important with Parkinson's, chronic pain, and depression, observed James Cavuoto, editor and publisher of Neurotech Reports. They may also allow for more fine-turning. "In general, the industry is looking for signals, biomarkers that indicate when is the right time to turn on and turn off the stimulation. It could dramatically increase the effectiveness of the therapy and conserve battery life," he said.

Eventually, external devices could receive data from biomarkers as well. "It could be something you wear on your wrist," Cavuoto noted. Bluetooth-enabled devices could communicate with phones or laptops for data capture. External devices don't require surgery and put the patient in charge. "In the future you'll see more customer specification: Give the patient a tablet or phone app that lets them track and modify their parameters, within a range. With digital devices we have an enormous capability to customize therapies and collect data and get feedback that can be fed back to the clinician," Cavuoto said.

Slow deep breathing, the traditional mind-body intervention, is "like watching Little League. What we're doing is Major League."

It's even possible to stimulate the vagus through the ear, where one branch of the bundle of fibers begins. In a fetus, the tissue that becomes the ear is also part of the vagus nerve, and that one bit remains. "It's the same point as the acupuncture point," explained Mark George, a psychiatrist and pioneer researcher in depression at Medical University of South Carolina in Charleston. "Acupuncture figured out years ago by trial and error what we're just learning about now."

Slow deep breathing, the traditional mind-body intervention, also affects the vagus nerve in positive ways, but gently. "That's like watching Little League," Staats, the co-founder of electroCore, said. "What we're doing is Major League."

In ten years, researcher Wilson suggested, you could be wearing "a little ear cuff" that monitors your basic autonomic tone, a heart-attack risk measure governed in part by the vagus nerve. If your tone looked iffy, the stimulator would intervene, he said, "and improve your mood, cognition, and health."

In the meantime, we can take some long slow breaths, read Whitman, and sing.

Temma Ehrenfeld
Temma Ehrenfeld writes about health and psychology. In a previous life, she was a reporter and editor at Newsweek and Fortune. You can see more of her work at her writing portfolio (https://temmaehrenfeld.contently.com) and contact her through her Psychology Today blog.

A spread of colorful pills.

(© mehmet/Fotolia)


Mindy D. had suffered from constipation for years when her gastroenterologist advised her, at 38, to take a popular over-the-counter probiotic. Over the next two years, she experimented with different dosages, sometimes taking it three times a day. But she kept getting sicker—sometimes so ill she couldn't work.

"We shouldn't just presume probiotics are safe."

Her symptoms improved only after she traveled from Long Island to Georgia to see Satish S. C. Rao, a gastroenterologist at Augusta University. "The key thing was taking her off probiotics and treating her with antibiotics," he says.

That solution sounds bizarre, if, like many, you believe that antibiotics are bad and probiotics good. Millions of Americans take probiotics—live bacteria deemed useful—assuming there can be only positive effects. The truth is that you really don't know how any probiotic will affect you. To quote the American Gastroenterological Association Center for Gut Microbiome Research and Education, "It remains unclear what strains of bacteria at what dose by what route of administration are safe and effective for which patients."

"We shouldn't just presume probiotics are safe," says Purna Kashyap, a gastroenterologist from the Mayo Clinic, in Rochester, Minnesota, and a member of the Center's scientific advisory board. Neither the U.S. Food and Drug Administration or the European Food Safety Authority have approved probiotics as a medical treatment. Things can go very wrong in the ill: Among patients with severe acute pancreatitis, one study found that a dose of probiotics increased the chance of death. Even randomized controlled trials of probiotics rarely report harms adequately and the effect over the long-term has not been studied.

Many people pick up a product at a drug store or health store without ever telling a doctor. Doctors are fans, too: in a 2017 survey of healthcare providers at Stanford, more than 60 percent of the respondents said they prescribed probiotics. Many did so inconsistently, leaving the choice of which probiotic up to the patient. Healthy people take them for a range of unproven benefits, including protection from infections or heart disease or to sharpen their brains.

It's fine—unless it isn't. "Probiotics are capable of altering the microbiome in unpredictable ways," explains Leo Galland, an internist in New York who specializes in difficult digestions. "I've had patients who got gas and bloating, constipation or diarrhea from probiotics."

Your Microbiome Is Unique

The booming probiotic market has fed on excitement about the new science of the microbiome, the genetic material of all the microbes that live in our bodies and on our skin. Microbes make up 1 to 3 percent of every human being's body mass—you carry trillions of them, including more than a hundred species and thousands of strains. To identify a microbe, you need to know the genus, species and strain. For example, in Lactobacillus rhamnosus GG, the ingredient in the OTC probiotic Culturelle, Lactobacillus is the genus, rhamnosus is the species and GG is the strain designation.

Variations in your microbiome could help explain why you put on weight or suffer from Crohn's or depression. Each of us has our own unique mix.

A decade ago, the U.S. National Institute of Health (NIH) launched the Microbiome Project to establish a baseline description of health. Scientists sequenced the DNA in more than 2,200 strains, still a small fraction of the whole.

Within a couple of years, we had evidence that our microbiomes are distinctive. Another team used the NIH data set to look into the idea of microbial "fingerprints." A classic computer science algorithm allowed it to assign individuals "codes" defined by DNA sequences of their microbes—no human DNA required. Using information solely from the guts, "Eighty percent of individuals could still be uniquely identified up to a year later," they wrote.

That distinctiveness makes a difference when we try to change our mix by swallowing bacteria considered "pro." Even in healthy people, the reactions to probiotics vary widely, according to a study in Cell in September. The team examined the intestines of healthy volunteers who had taken a cocktail of eleven strains of probiotics for the experiment. Which took up residence in the intestinal lining? The answer depended on the person. Led by Eran Segal and colleagues at the Weizmann Institute of Science, in Rehovot, Israel, the authors concluded that effective supplements would have to be personalized.

Patients with "brain fog" improved dramatically when they were taken off their probiotics and given antibiotics as well.

To truly customize a probiotic, however, we'd have to know the state of an individual's gut microbiome, identify danger signs and link them to symptoms, isolate relevant strains of probiotics that might be needed, and get them into the gut lining effectively. Commercial tests are still at step one. Several companies claim to assess your microbiome based on a stool sample—but the Weizmann team has also shown that the differences between our gut linings aren't apparent from our stool. Galland has explored testing his patients looking for ways to help. "I've concluded that uBiome, American Gut Project, and others don't yield useful information," he observes.

Can A Probiotic Make Your Brain Foggy?

Besides taking her probiotic, Mindy D. had cut out gluten and upped her vegetables and fruits. But soon after she ate her seemingly healthy meals, she would begin to feel dizzy and sometimes even slurred her words, as if she were drunk. "It was such an intense feeling," she said.

A slender 5 ft. 2 inches, she dropped 20 pounds, becoming unhealthily thin. She traveled to see specialists in Minnesota and Connecticut and took two month-long medical leaves before she found Rao in Georgia.

In June, Rao created a stir when he and his coauthors reported that a cluster of his patients with "brain fog"—the "intense feeling" Mindy D. described—improved dramatically when they were taken off their probiotics and given antibiotics as well.

His idea was that lactobacilli and other bacteria colonized their small intestines, rather than making it to the colon as intended—a condition known as "small intestinal bacteria overgrowth" (SIB0) that some gastroenterologists treat with antibiotics. In this group, he argues, the small intestine produced the brain fog symptoms as a consequence of D-lactic acidosis, a phenomenon usually associated with damaged intestines. "If you have brain fogginess along with gas and bloating, please don't take probiotics," Rao says.

The paper prompted a rebuttal at the end of September from Eamonn Quigley, a gastroenterologist at Houston Methodist, who criticized the methodology in detail. Kashyap, of the Mayo Clinic, is skeptical as well. "People were picked for their brain fogginess and they were taking probiotics. Probiotics could be an innocent bystander," he says.

"It's hard for me to imagine the mechanism of say, Culturelle, causing SIB0," says Shira Doron, a specialist in infectious diseases and associate professor at Tufts University School of Medicine who studies probiotics. "The vast majority of people will never suffer a side effect from a probiotic. But probiotics are a live organism so they have a unique set of potential risks that other supplements don't have. They can give you a severe infection in very rare circumstances."

The larger point is that probiotics should be used under a doctor's care. In April, a panel of 14 experts on behalf of the European Society for Primary Care Gastroenterology concluded that "specific probiotics are beneficial in certain lower GI problems." That does not mean any over-the-counter probiotic is likely to help you because it helped your cousin.

"Even your doctor may be going by anecdotal experience, rather than hard science."

Both Galland and Rao use probiotics in their practice, but carefully. "We advise caution against excessive and indiscriminate use of probiotics especially without a well-defined medical indication, and particularly in patients with gastrointestinal dysmotility," when the muscles of the digestive system don't work normally, Rao's team wrote.

"Because there are so many studies out there that are poorly done, that aren't looking at side effects, the science is murky. Even your doctor may be going by anecdotal experience, rather than hard science," Doron adds. Your doctor may tell you that many of his patients report a great experience with probiotics. As Doron points out, however, with disorders like irritable bowel syndrome, the most common gastrointestinal diagnosis, the placebo effect is very strong. Many patients could "respond to anything if they believe it works," she says.

Temma Ehrenfeld
Temma Ehrenfeld writes about health and psychology. In a previous life, she was a reporter and editor at Newsweek and Fortune. You can see more of her work at her writing portfolio (https://temmaehrenfeld.contently.com) and contact her through her Psychology Today blog.