Stefania Sterling with her son Charlie, who was diagnosed at age 3 with autism.


Stefania Sterling was just 21 when she had her son, Charlie. She was young and healthy, with no genetic issues apparent in either her or her husband's family, so she expected Charlie to be typical.

"It is surprising that the prevalence of a significant disorder like autism has risen so consistently over a relatively brief period."

It wasn't until she went to a Mommy and Me music class when he was one, and she saw all the other one-year-olds walking, that she realized how different her son was. He could barely crawl, didn't speak, and made no eye contact. By the time he was three, he was diagnosed as being on the lower functioning end of the autism spectrum.

She isn't sure why it happened – and researchers, too, are still trying to understand the basis of the complex condition. Studies suggest that genes can act together with influences from the environment to affect development in ways that lead to Autism Spectrum Disorder (ASD). But rates of ASD are rising dramatically, making the need to figure out why it's happening all the more urgent.

The Latest News

Indeed, the CDC's latest autism report, released last week, which uses 2016 data, found that the prevalence of ASD in four-year-old children was one in 64 children, or 15.6 affected children per 1,000. That's more than the 14.1 rate they found in 2014, for the 11 states included in the study. New Jersey, as in years past, was the highest, with 25.3 per 1,000, compared to Missouri, which had just 8.8 per 1,000.

The rate for eight-year-olds had risen as well. Researchers found the ASD prevalence nationwide was 18.5 per 1,000, or one in 54, about 10 percent higher than the 16.8 rate found in 2014. New Jersey, again, was the highest, at one in 32 kids, compared to Colorado, which had the lowest rate, at one in 76 kids. For New Jersey, that's a 175 percent rise from the baseline number taken in 2000, when the state had just one in 101 kids.

"It is surprising that the prevalence of a significant disorder like autism has risen so consistently over a relatively brief period," said Walter Zahorodny, an associate professor of pediatrics at Rutgers New Jersey Medical School, who was involved in collecting the data.

The study echoed the findings of a surprising 2011 study in South Korea that found 1 in every 38 students had ASD. That was the the first comprehensive study of autism prevalence using a total population sample: A team of investigators from the U.S., South Korea, and Canada looked at 55,000 children ages 7 to 12 living in a community in South Korea and found that 2.64 percent of them had some level of autism.

Searching for Answers

Scientists can't put their finger on why rates are rising. Some say it's better diagnosis. That is, it's not that more people have autism. It's that we're better at detecting it. Others attribute it to changes in the diagnostic criteria. Specifically, the May 2013 update of the Diagnostic and Statistical Manual of Mental Disorders-5 -- the standard classification of mental disorders -- removed the communication deficit from the autism definition, which made more children fall under that category. Cynical observers believe physicians and therapists are handing out the diagnosis more freely to allow access to services available only to children with autism, but that are also effective for other children.

Alycia Halladay, chief science officer for the Autism Science Foundation in New York, said she wishes there were just one answer, but there's not. While she believes the rising ASD numbers are due in part to factors like better diagnosis and a change in the definition, she does not believe that accounts for the entire rise in prevalence. As for the high numbers in New Jersey, she said the state has always had a higher prevalence of autism compared to other states. It is also one of the few states that does a good job at recording cases of autism in its educational records, meaning that children in New Jersey are more likely to be counted compared to kids in other states.

"Not every state is as good as New Jersey," she said. "That accounts for some of the difference compared to elsewhere, but we don't know if it's all of the difference in prevalence, or most of it, or what."

"What we do know is that vaccinations do not cause autism."

There is simply no defined proven reason for these increases, said Scott Badesch, outgoing president and CEO of the Autism Society of America.

"There are suggestions that it is based on better diagnosis, but there are also suggestions that the incidence of autism is in fact increasing due to reasons that have yet been determined," he said, adding, "What we do know is that vaccinations do not cause autism."

Zahorodny, the pediatrics professor, believes something is going on beyond better detection or evolving definitions.

"Changes in awareness and shifts in how children are identified or diagnosed are relevant, but they only take you so far in accounting for an increase of this magnitude," he said. "We don't know what is driving the surge in autism recorded by the ADDM Network and others."

He suggested that the increase in prevalence could be due to non-genetic environmental triggers or risk factors we do not yet know about, citing possibilities including parental age, prematurity, low birth rate, multiplicity, breech presentation, or C-section delivery. It may not be one, but rather several factors combined, he said.

"Increases in ASD prevalence have affected the whole population, so the triggers or risks must be very widely dispersed across all strata," he added.

There are studies that find new risk factors for ASD almost on a daily basis, said Idan Menashe, assistant professor in the Department of Health at Ben-Gurion University of the Negev, the fastest growing research university in Israel.

"There are plenty of studies that find new genetic variants (and new genes)," he said. In addition, various prenatal and perinatal risk factors are associated with a risk of ASD. He cited a study his university conducted last year on the relationship between C-section births and ASD, which found that exposure to general anesthesia may explain the association.

Whatever the cause, health practitioners are seeing the consequences in real time.

"People say rates are higher because of the changes in the diagnostic criteria," said Dr. Roseann Capanna-Hodge, a psychologist in Ridgefield, CT. "And they say it's easier for children to get identified. I say that's not the truth and that I've been doing this for 30 years, and that even 10 years ago, I did not see the level of autism that I do see today."

Sure, we're better at detecting autism, she added, but the detection improvements have largely occurred at the low- to mid- level part of the spectrum. The higher rates of autism are occurring at the more severe end, in her experience.

A Polarizing Theory

Among the more controversial risk factors scientists are exploring is the role environmental toxins may play in the development of autism. Some scientists, doctors and mental health experts suspect that toxins like heavy metals, pesticides, chemicals, or pollution may interrupt the way genes are expressed or the way endocrine systems function, manifesting in symptoms of autism. But others firmly resist such claims, at least until more evidence comes forth. To date, studies have been mixed and many have been more associative than causative.

"Today, scientists are still trying to figure out whether there are other environmental changes that can explain this rise, but studies of this question didn't provide any conclusive answer," said Menashe, who also serves as the scientific director of the National Autism Research Center at BGU.

"It's not everything that makes Charlie. He's just like any other kid."

That inconclusiveness has not dissuaded some doctors from taking the perspective that toxins do play a role. "Autism rates are rising because there is a mismatch between our genes and our environment," said Julia Getzelman, a pediatrician in San Francisco. "The majority of our evolution didn't include the kinds of toxic hits we are experiencing. The planet has changed drastically in just the last 75 years –- it has become more and more polluted with tens of thousands of unregulated chemicals being used by industry that are having effects on our most vulnerable."

She cites BPA, an industrial chemical that has been used since the 1960s to make certain plastics and resins. A large body of research, she says, has shown its impact on human health and the endocrine system. BPA binds to our own hormone receptors, so it may negatively impact the thyroid and brain. A study in 2015 was the first to identify a link between BPA and some children with autism, but the relationship was associative, not causative. Meanwhile, the Food and Drug Administration maintains that BPA is safe at the current levels occurring in food, based on its ongoing review of the available scientific evidence.

Michael Mooney, President of St. Louis-based Delta Genesis, a non-profit organization that treats children struggling with neurodevelopmental delays like autism, suspects a strong role for epigenetics, which refers to changes in how genes are expressed as a result of environmental influences, lifestyle behaviors, age, or disease states.

He believes some children are genetically predisposed to the disorder, and some unknown influence or combination of influences pushes them over the edge, triggering epigenetic changes that result in symptoms of autism.

For Stefania Sterling, it doesn't really matter how or why she had an autistic child. That's only one part of Charlie.

"It's not everything that makes Charlie," she said. "He's just like any other kid. He comes with happy moments. He comes with sad moments. Just like my other three kids."

Caren Chesler
Caren Chesler is an award-winning journalist whose work has appeared in The New York Times, Scientific American, Slate, Salon, and Popular Mechanics. She has a blog called The Dancing Egg, about having a baby at 47 through IVF.
Get our top stories twice a month
Follow us on

Couples facing infertility should be savvy about the add-on procedures offered by some fertility clinics.

(© pololia/Adobe)

When Jane Stein and her husband used in-vitro fertilization in 2001 to become pregnant with twins, her fertility clinic recommended using a supplemental procedure called intracytoplasmic sperm injection (ICSI), known in fertility lingo as "ix-see."

'Add-on' fertility procedures are increasingly coming under scrutiny for having a high cost and low efficacy rate.

During IVF, an egg and sperm are placed in a petri dish together with the hope that a sperm will seek out and fertilize the egg. With ICSI, doctors inject sperm directly into the egg.

Stein, whose name has been changed to protect her privacy, agreed to try it. Her twins are now 16, but while 17 years have gone by since that procedure, the efficacy of ICSI is still unclear. In other words, while Stein succeeded in having children, it may not have been because of ICSI. It may simply have been because she did IVF.

The American Society for Reproductive Medicine has concluded, "There are no data to support the routine use of ICSI for non-male factor infertility." That is, ICSI can help couples have a baby when the issue is male infertility. But when it's not, the evidence of its effectiveness is lacking. And yet the procedure is being used more and more, even when male infertility is not the issue. Some 40 percent of fertility treatments in Europe, Asia and the Middle East now use ICSI, according to a world report released in 2016 by the International Committee for Monitoring Assisted Reproductive Technologies. In the Middle East, the figure is actually 100 percent, the report said.

ICSI is just one of many supplemental procedures, or 'add-ons,' increasingly coming under scrutiny for having a high cost and low efficacy rate. They cost anywhere from a couple of hundred dollars to several thousand – ICSI costs $2,000 to $3,000 -- hiking up the price of what is already a very costly endeavor. And many don't even work. Worse, some actually cause harm.

It's no surprise couples use them. They promise to increase the chance of conceiving. For patients who desperately want a child, money is no object. The Human Fertilization and Embryology Authority (HFEA) in the U.K. found that some 74 percent of patients who received fertility treatments over the last two years were given at least one type of add-on. Now, fertility associations in the U.S. and abroad have begun issuing guidance about which add-ons are worth the extra cost and which are not.

"Many IVF add-ons have little in the way of conclusive evidence supporting their role in successful IVF treatment," said Professor Geeta Nargund, medical director of CREATE Fertility and Lead Consultant for reproductive medicine at St George's Hospital, London.

The HFEA has actually rated these add-ons, indicating which procedures are effective and safe. Some treatments were rated 'red' because they were considered to have insufficient evidence to justify their use. These include assisted hatching, which uses acid or lasers to make a hole in the surrounding layer of proteins to help the embryo hatch; intrauterine culture, where a device is inserted into the womb to collect and incubate the embryo; and reproductive immunology, which suppresses the body's natural immunity so that it accepts the embryo.

"Fertility care is a highly competitive market. In a private system, offering add-ons may discern you from your neighboring clinic."

For some treatments, the HFEA found there is evidence that they don't just fail to work, but can even be harmful. These procedures include ICSI used when male infertility is not at issue, as well as a procedure called endometrial scratching, where the uterus is scratched, not unlike what would happen with a biopsy, to stimulate the local uterine immune system.

And then for some treatments, there is conflicting evidence, warranting further research. These include artificial egg activation by calcium ionophore, elective freezing in all cycles, embryo glue, time-lapse imaging and pre-implantation genetic testing for abnormal chromosomes on day 5.

"Currently, there is very little evidence to suggest that many of the add-ons could increase success rates," Nargund said. "Indeed, the HFEA's assessment of add-on treatments concluded that none of the add-ons could be given a 'green' rating, due to a lack of conclusive supporting research."

So why do fertility clinics offer them?

"Fertility care is a highly competitive market," said Professor Hans Evers, editor-in-chief of the journal Human Reproduction. "In a private system, offering add-ons may discern you from your neighboring clinic. The more competition, the more add-ons. Hopefully the more reputable institutions will only offer add-ons (for free) in the context of a randomized clinical trial."

The only way for infertile couples to know which work and which don't is the guidance released by professional organizations like the ASRM, and through government regulation in countries that have a public health care system.

The problem is, infertile couples will sometimes do anything to achieve a pregnancy.

"They will stand on their heads if this is advocated as helpful. Someone has to protect them," Evers said.

In the Netherlands, where Evers is based, the national health care system tries to make the best use of the limited resources it has, so it makes sure the procedures it's funding actually work, Evers said.

"We have calculated that to serve a population of 17 million, we need 13 IVF clinics, and we have 13," he said. "We as professionals discuss and try to agree on the value of newly proposed add-ons, and we will implement only those that are proven effective and safe."

Likewise, in the U.K., there's been a lot of squawking about speculative add-ons because the government, or National Health Service, pays for them. In the U.S., it's private insurers or patients' own cash.

"The [U.K.] government takes a very close look at what therapies they are offering and what the evidence is around offering the therapy," said Alan Penzias, who chairs the Practice Committee of the ASRM. It wants to make sure the treatments it is funding are at least worth the money.

ICSI is a case in point. Originally intended for male infertility, it's now being applied across the board because fertility clinics didn't want couples to pay $10,000 to $15,000 and wind up with no embryos.

"It is so disastrous to have no fertilization whatsoever, clinics started to make this bargain with their patients, saying, 'Well, listen, even though it's not indicated, what we would like to do is to take half of your eggs and do the ICSI procedure, and half we'll do conventional insemination just to make sure,'" he said. "It's a disaster if you have no embryos, and now you're out 10 to 12 thousand dollars, so for a small added fee, we can do the injection just to guard against that."

In the Netherlands, the national health care system tries to make the best use of its limited resources, so it makes sure the procedures it's funding actually work.

Clinics offer it where they see lower rates of fertilization, such as with older women or in cases where induced ovulation results in just two or three eggs instead of, say, 13. Unfortunately, ICSI may result in a higher fertilization rate, but it doesn't result in a higher live birth rate, according to a study last year in Human Reproduction, so couples wind up paying for a procedure that doesn't even result in a child.

Private insurers in the U.S. are keen to it. Penzia, who is also an associate professor of obstetrics, gynecology and reproductive biology at Harvard Medical School and works as a reproductive endocrinology and infertility specialist at Boston IVF, said Massachusetts requires that insurers cover infertility treatments. But when he submits claims for ICSI, for instance, insurers now want to see two sperm counts and proof that the man has seen a urologist.

"They want to make sure we're doing it for male factor (infertility)," he said. "That's not unreasonable, because the insurance company is taking the burden of this."

Caren Chesler
Caren Chesler is an award-winning journalist whose work has appeared in The New York Times, Scientific American, Slate, Salon, and Popular Mechanics. She has a blog called The Dancing Egg, about having a baby at 47 through IVF.

A lamb receiving a shot from medical personnel.

(© Budimir Jevtic/Fotolia)

More than 114,000 men, women, and children are awaiting organ transplants in the United States. Each day, 22 of them die waiting. To address this shortage, researchers are working hard to grow organs on-demand, using the patient's own cells, to eliminate the need to find a perfectly matched donor.

"The next step is to transplant these cells into a larger animal that will produce an organ that is the right size for a human."

But creating full-size replacement organs in a lab is still decades away. So some scientists are experimenting with the boundaries of nature and life itself: using other mammals to grow human cells. Earlier this year, this line of investigation took a big step forward when scientists announced they had grown sheep embryos that contained human cells.

Dr. Pablo Ross, an associate professor at the University of California, Davis, along with a team of colleagues, introduced human stem cells into the sheep embryos at a very early stage of their development and found that one in every 10,000 cells in the embryo were human. It was an improvement over their prior experiment, using a pig embryo, when they found that one in every 100,000 cells in the pig were human. The resulting chimera, as the embryo is called, is only allowed to develop for 28 days. Leapsmag contributor Caren Chesler recently spoke with Ross about his research. Their interview has been edited and condensed for clarity.

Your goal is to one day grow human organs in animals, for organ transplantation. What does your research entail?

We're transplanting stem cells from a person into an animal embryo, at about day three to five of embryo development.

This concept has already been shown to work between mice and rats. You can grow a mouse pancreas inside a rat, or you can grow a rat pancreas inside a mouse.

For this approach to work for humans, the next step is to transplant these cells into a larger animal that will produce an organ that is the right size for a human. That's why we chose to start some of this preliminary work using pigs and sheep. Adult pigs and adult sheep have organs that are of similar size to an adult human. Pigs and sheep also grow really fast, so they can grow from a single cell at the time of fertilization to human adult size -- about 200 pounds -- in only nine to 10 months. That's better than the average waiting time for an organ transplant.

"You don't want the cells to confer any human characteristics in the animal....Too many cells, that may be a problem, because we do not know what that threshold is."

So how do you get the animal to grow the human organ you want?

First, we need to generate the animal without its own organ. We can generate sheep or pigs that will not grow their own pancreases. Those animals can then be used as hosts for human pancreas generation.

For the approach to work, we need the human stem cells to be able to integrate into the embryo and to contribute to its tissues. What we've been doing with pigs, and more recently, in sheep, is testing different types of stem cells, and introducing them into an early embryo between three to five days of development. We then transfer that embryo to a surrogate female and then harvest the embryos back at day 28 of development, at which point most of the organs are pre-formed.

The human cells will contribute to every organ. But in trying to do that, they will compete with the host organism. Since this is happening inside a pig embryo, which is inside a pig foster mother, the pig cells will win that competition for every organ.

Because you're not putting in enough human cells?

No, because it's a pig environment. Everything is pig. The host, basically, is in control. That's what we see when we do rat mice, or mouse rat: the host always wins the battle.

But we need human cells in the early development -- a few, but not too few -- so that when an organ needs to form, like a pancreas (which develops at around day 25), the pig cells will not respond to that, but if there are human cells in that location, [those human cells] can respond to pancreas formation.

From the work in mice and rats, we know we need some kind of global contribution across multiple tissues -- even a 1% contribution will be sufficient. But if the cells are not there, then they're not going to contribute to that organ. The way we target the specific organ is by removing the competition for that organ.

So if you want it to grow a pancreas, you use an embryo that is not going to grow a pancreas of its own. But you can't control where the other cells go. For instance, you don't want them going to the animal's brain – or its gonads –right?

You don't want the cells to confer any human characteristics in the animal. But even if cells go to the brain, it's not going to confer on the animal human characteristics. A few human cells, even if they're in the brain, won't make it a human brain. Too many cells, that may be a problem, because we do not know what that threshold is.

The objective of our research right now is to look at just 28 days of embryonic development and evaluate what's going on: Are the human cells there? How many? Do they go to the brain? If so, how many? Is this a problem, or is it not a problem? If we find that too many human cells go to the brain, that will probably mean that we wouldn't continue with this approach. At this point, we're not controlling it; we're analyzing it.

"By keeping our research in a very early stage of development, we're not creating a human or a humanoid or anything in between."

What other ethical concerns have arisen?

Conferring human properties to the organism, that is a major concern. I wouldn't like to be involved in that, and so that's what we're trying to assess. By keeping our research in a very early stage of development, we're not creating a human or a humanoid or anything in between.

What specifically sets off the ethical alarms? An animal developing human traits?

Animals developing human characteristics goes beyond what would be considered acceptable. I share that concern. But so far, what we have observed, primarily in rats and mice, is that the host animal dictates development. When you put mouse cells into a rat -- and they're so closely related, sometimes the mouse cells contribute to about 30 percent of the cells in the animal -- the outcome is still a rat. It's the size of a rat. It's the shape of the rat. It has the organ sizes of a rat. Even when the pancreas is fully made out of mouse cells, the pancreas is rat-sized because it grew inside the rat.

This happens even with an organ that is not shared, like a gallbladder, which mice have but rats do not. If you put cells from a mouse into a rat, it never grows a gallbladder. And if you put rat cells into the mouse, the rat cells can end up in the gallbladder even though those rat cells would never have made a gallbladder in a rat.

That means the cell structure is following the directions of the embryo, in terms of how they're going to form and what they're going to make. Based on those observations, if you put human cells into a sheep, we are going to get a sheep with human cells. The organs, the pancreas, in our case, will be the size and shape of the sheep pancreas, but it will be loaded with human cells identical to those of the patient that provided the cells used to generate the stem cells.

But, yeah, if by doing this, the animal acquires the functional or anatomical characteristics associated with a human, it would not be acceptable for me.

So you think these concerns are justified?

Absolutely. They need to be considered. But sometimes by raising these concerns, we prevent technologies from being developed. We need to consider the concerns, but we must evaluate them fully, to determine if they are scientifically justified. Because while we must consider the ethics of doing this, we also need to consider the ethics of not doing it. Every day, 22 people in the US die because they don't receive the organ they need to survive. This shortage is not going to be solved by donations, alone. That's clear. And when people die of old age, their organs are not good anymore.

Since organ transplantation has been so successful, the number of people needing organs has just been growing. The number of organs available has also grown but at a much slower pace. We need to find an alternative, and I think growing the organs in animals is one of those alternatives.

Right now, there's a moratorium on National Institutes of Health funding?

Yes. It's only one agency, but it happens to be the largest biomedical funding source. We have public funding for this work from the California Institute for Regenerative Medicine, and one of my colleagues has funding from the Department of Defense.

"I can say, without NIH funding, it's not going to happen here. It may happen in other places, like China."

Can we put the moratorium in context? How much research in the U.S. is funded by the NIH?

Probably more than 75 percent.

So what kind of impact would lifting that ban have on speeding up possible treatments for those who need a new organ?

Oh, I think it would have a huge impact. The moratorium not only prevents people from seeking funding to advance this area of research, it influences other sources of funding, who think, well, if the NIH isn't doing it, why are we going to do it? It hinders progress.

So with the ban, how long until we can really have organs growing in animals? I've heard five or 10 years.

With or without the ban, I don't think I can give you an accurate estimate.

What we know so far is that human cells don't contribute a lot to the animal embryo. We don't know exactly why. We have a lot of good ideas about things we can test, but we can't move forward right now because we don't have funding -- or we're moving forward but very slowly. We're really just scratching the surface in terms of developing these technologies.

We still need that one major leap in our understanding of how different species interact, and how human cells participate in the development of other species. I cannot predict when we're going to reach that point. I can say, without NIH funding, it's not going to happen here. It may happen in other places, like China, but without NIH funding, it's not going to happen in the U.S.

I think it's important to mention that this is in a very early stage of development and it should not be presented to people who need an organ as something that is possible right now. It's not fair to give false hope to people who are desperate.

So the five to 10 year figure is not realistic.

I think it will take longer than that. If we had a drug right now that we knew could stop heart attacks, it could take five to 10 years just to get it to market. With this, you're talking about a much more complex system. I would say 20 to 25 years. Maybe.

Caren Chesler
Caren Chesler is an award-winning journalist whose work has appeared in The New York Times, Scientific American, Slate, Salon, and Popular Mechanics. She has a blog called The Dancing Egg, about having a baby at 47 through IVF.