Today’s Focus on STEM Education Is Missing A Crucial Point

A student in a contemplative pose.

(© Matthias Stolt/Fotolia)


I once saw a fascinating TED talk on 3D printing. As I watched the presenter discuss the custom fabrication, not of plastic gears or figurines, but of living, implantable kidneys, I thought I was finally living in the world of Star Trek, and I experienced a flush of that eager, expectant enthusiasm I felt as a child looking toward the future. I looked at my current career and felt a rejuvenation of my commitment to teach young people the power of science.

The well-rounded education of human beings needs to include lessons learned both from a study of the physical world, and from a study of humanity.

Whether we are teachers or not, those of us who admire technology and innovation, and who wish to support progress, usually embrace the importance of educating the next generation of scientists and inventors. Growing a healthy technological civilization takes a lot of work, skill, and wisdom, and its continued health depends on future generations of competent thinkers. Thus, we may find it encouraging that there is currently an abundance of interest in STEM– the common acronym for the study of science, technology, engineering, and math.

But education is as challenging an endeavor as science itself. Educating youth--if we want to do it right--requires as much thought, work, and expertise as discovering a cure or pioneering regenerative medicine. Before we give our money, time, or support to any particular school or policy, let's give some thought to the details of the educational process.

A Well-Balanced Diet

For one thing, STEM education cannot stand in isolation. The well-rounded education of human beings needs to include lessons learned both from a study of the physical world, and from a study of humanity. This is especially true for the basic education of children, but it is true even for college students. And even for those in science and engineering, there are important lessons to be learned from the study of history, literature, and art.

Scientists have their own emotions and values, and also need financial support. The fruits of their labor ultimately benefit other people. How are we all to function together in our division-of-labor society, without some knowledge of the way societies work? How are we to fully thrive and enjoy life, without some understanding of ourselves, our motives, our moral values, and our relationships to others? STEM education needs the humanities as a partner. That flourishing civilization we dream of requires both technical competence and informed life-choices.

Think for Yourself (Even in Science)

Perhaps even more important than what is taught, is the subject of how things are taught. We want our children to learn the skill of thinking independently, but even in the sciences, we often fail completely to demonstrate how. Instead of teaching science as a thinking process, we indoctrinate, using the grand discoveries of the great scientists as our sacred texts. But consider the words of Isaac Newton himself, regarding rote learning:

A Vulgar Mechanick can practice what he has been taught or seen done, but if he is in an error he knows not how to find it out and correct it, and if you put him out of his road he is at a stand. Whereas he that is able to reason nimbly and judiciously about figure, force, and motion, is never at rest till he gets over every rub.

What's the point of all this formal schooling in the first place? Is it, as many of the proponents of STEM education might argue, to train students for a "good" career?

If our goal is to help students "reason nimbly" about the world around them, as the great scientists themselves did, are we succeeding? When we "teach" middle school students about DNA or cellular respiration by presenting as our only supporting evidence cartoon pictures, are we showing students a process of discovery based on evidence and hard work? Or are we just training them to memorize and repeat what the authorities say?

A useful education needs to give students the skill of following a line of reasoning, of asking rational questions, and of chewing things through in their minds--even if we regard the material as beyond question. Besides feeding students a well-balanced diet of knowledge, healthy schooling needs to teach them to digest this information thoroughly.

Thinking Training

Now step back for a moment and think about the purpose of education. What's the point of all this formal schooling in the first place? Is it, as many of the proponents of STEM education might argue, to train students for a "good" career? That view may have some validity for young adults, who are beginning to choose electives in favored subjects, and have started to choose a direction for their career.

But for the basic education of children, this way of thinking is presumptuous and disastrous. I would argue that the central purpose of a basic education is not to teach children how to perform this or that particular skill, but simply to teach them to think clearly. We should not be aiming to provide job training, but thinking training. We should be helping children learn how to "reason nimbly" about the world around them, and breathing life into their thinking processes, by which they will grapple with the events and circumstances of their lives.

So as we admire innovation, dream of a wonderful future, and attempt to nurture the next generation of scientists and engineers, instead of obsessing over STEM education, let us focus on rational education. Let's worry about showing children how to think--about all the important things in life. Let's give them the basic facts of human existence -- physical and humanitarian -- and show them how to fluently and logically understand them.

Some students will become the next generation of creators, and some will follow other careers, but together -- if they are educated properly -- they will continue to grow their inheritance, and to keep our civilization healthy and flourishing, in body and in mind.

John Krieger
John Krieger has been developing curriculum and teaching science to elementary and junior high students for the last 12 years. He holds degrees in physics and mechanical engineering, is fascinated by the history of technology and the development of scientific thought, and is working on writing textbooks and educational materials that reflect his views on science education. He lives and works in Orange County, CA.
Get our top stories twice a month
Follow us on
Brain Cancer Chromosomes. Chromosomes prepared from a malignant glioblastoma visualized by spectral karyotyping (SKY) reveal an enormous degree of chromosomal instability -- a hallmark of cancer. Created by Thomas Ried, 2014

Glioblastoma is an aggressive and deadly brain cancer, causing more than 10,000 deaths in the US per year. In the last 30 years there has only been limited improvement in the survival rate despite advances in radiation therapy and chemotherapy. Today the typical survival rate is just 14 months and that extra time is spent suffering from the adverse and often brutal effects of radiation and chemotherapy.

Scientists are trying to design more effective treatments for glioblastoma with fewer side effects. Now, a team at the Department of Neurosurgery at Houston Methodist Hospital has created a magnetic helmet-based treatment called oncomagnetic therapy: a promising non-invasive treatment for shrinking cancerous tumors. In the first patient tried, the device was able to reduce the tumor of a glioblastoma patient by 31%. The researchers caution, however, that much more research is needed to determine its safety and effectiveness.

Keep Reading Keep Reading
Sarah Philip
Sarah Philip is a London-based freelance journalist who writes about science, film and TV. You can follow her on Twitter @sarahph1lip.

Astronaut and Expedition 64 Flight Engineer Soichi Noguchi of the Japan Aerospace Exploration Agency displays Extra Dwarf Pak Choi plants growing aboard the International Space Station. The plants were grown for the Veggie study which is exploring space agriculture as a way to sustain astronauts on future missions to the Moon or Mars.

Johnson Space Center/NASA

Astronauts at the International Space Station today depend on pre-packaged, freeze-dried food, plus some fresh produce thanks to regular resupply missions. This supply chain, however, will not be available on trips further out, such as the moon or Mars. So what are astronauts on long missions going to eat?

Going by the options available now, says Christel Paille, an engineer at the European Space Agency, a lunar expedition is likely to have only dehydrated foods. “So no more fresh product, and a limited amount of already hydrated product in cans.”

For the Mars mission, the situation is a bit more complex, she says. Prepackaged food could still constitute most of their food, “but combined with [on site] production of certain food products…to get them fresh.” A Mars mission isn’t right around the corner, but scientists are currently working on solutions for how to feed those astronauts. A number of boundary-pushing efforts are now underway.

Keep Reading Keep Reading
Payal Dhar
Payal is a writer based in New Delhi who has been covering science, technology, and society since 1998.