"There's a Bacteria For That"
Kira Peikoff was the editor-in-chief of Leaps.org from 2017 to 2021. As a journalist, her work has appeared in The New York Times, Newsweek, Nautilus, Popular Mechanics, The New York Academy of Sciences, and other outlets. She is also the author of four suspense novels that explore controversial issues arising from scientific innovation: Living Proof, No Time to Die, Die Again Tomorrow, and Mother Knows Best. Peikoff holds a B.A. in Journalism from New York University and an M.S. in Bioethics from Columbia University. She lives in New Jersey with her husband and two young sons. Follow her on Twitter @KiraPeikoff.

Bacteria Lactobacillus, gram-positive rod-shaped lactic acid bacteria which are part of normal flora of human intestine are used as probiotics and in yogurt production, close-up view. (Image copyright: Fotolia)
"There's an app for that." Get ready for a cutting-edge twist on this common phrase. In the life sciences, researchers in the field of synthetic biology are engineering microbes to execute specific tasks, like diagnosing gut inflammation, purifying dirty water, and cleaning up oil spills. Here are five academic and commercial projects underway now that will make you want to add the term "designer bacteria" to your vocab.
1) Bacteria that can sense, diagnose and treat disorders of the gut.
Dr. Pamela Silver at Harvard Medical School has engineered non-pathenogenic strains of E. Coli bacteria, which she calls "living diagnostics and therapeutics," to accurately sense whether an animal has been exposed to antibiotics and whether inflammation is present in its intestines.
Imagine a "living FitBit" that could report on your gut health in real time.
So how does it work? "The bacteria have a genetic switch like a light switch," she explains, "and when they are exposed to an antibiotic or an inflammatory response, the light switch flips to on and the bacteria turn color." In a study that Silver and her colleagues published earlier this year, the bacteria in mouse guts turned blue when exposed to the chemical tetrathionate, which is produced during inflammation. Then, when the animal excreted waste, its feces were also blue. For safety reasons, the excreted bacteria can additionally be programmed to self-destruct so as not to contaminate the environment.
The implications for human health go way beyond a non-invasive alternative to colonoscopies. Imagine "a living FitBit," Silver says with a laugh – a probiotic your doctor could prescribe that could colonize your gut to report on your intestinal health and your diet—and even treat pathogens at the same time. Another potential application is to deploy this new tool in the skin as a living sensor. "Your skin has a defined population of bacteria and those could be engineered to sense a lot," she says, such as pathological changes and toxic environmental exposures.
But one big social question in this emerging research remains how open the public and regulators will be to genetically modified organisms as drugs. Silver says that acceptance will require "patient advocacy, education, and showing these actually work. We have shown in an animal that it can work. So far, in humans, it's unclear."
"Live biotherapeutic products" is a whole new category of drug.
2) Bacteria that can treat a rare metabolic disease.
The startup company Synlogic, based in Cambridge, Mass., has designed an experimental pill containing a strain of E. Coli bacteria that can soak up excess ammonia in a person's stomach, treating those who suffer from toxic elevated blood ammonia levels. This condition, called hyperammonemia, can occur in those with chronic liver disease or genetic urea cycle disorders. The pill is genetically engineered to convert ammonia into a beneficial amino acid instead.
Just a few weeks ago, the company announced positive data from its Phase 1 trial, in which the pill was tested on a group of 52 healthy volunteers for the first time. The study was randomized, double-blind and placebo-controlled, which means that neither the researchers nor the subjects knew who was getting the active pill vs. a sham one. This design is the gold standard in clinical research because it overcomes bias and produces objective results. So far, the pill appears to be safe and well-tolerated, and the company plans to continue the next phase of testing in 2018. Synlogic's treatment stands to be the first of this category of therapy—called "live biotherapeutic products"—that will be scrutinized by the FDA when the time comes for possible market approval.
3) Bacteria that can be sprayed on land to clean up an oil spill.
"This is science fiction, but it's become a lot less science fiction in the last couple of years," says Floyd E. Romesberg, a professor of chemistry whose lab at the Scripps Research Institute in California is on the forefront of synthetic biology.
"We have literally increased the biology that cells can write stories with."
His lab has added two new letters to the code of life. At the most fundamental level, all life on Earth, including human, animal, and bacteria, relies on the four "letters" or chemical building blocks of A, T, C, and G to store biological information inside a cell and then retrieve it in the form of proteins that perform essential tasks. For the first time in history, Romesberg and his team have now developed an unnatural base pair—an X and a Y—capable of storing increased information.
"We have literally increased the biology that cells can write stories with," he says. "With new letters, you can write new words, new sentences, and you can tell new stories, as opposed to taking the limited vocabulary you have and trying to rearrange it."
The implications of his research are immense; applications range from developing therapeutic proteins as drugs, to bestowing cells with new properties, such as oxidizing oil after a spill. He imagines a future scenario in which, for example, specially engineered bacteria are sprayed on a beach, eat the oil for three generations of their life—less than a day—and then die off, since they will be unable to replicate their own DNA. Afterwards, the beach is clean.
"What we are struggling with now is the first steps toward doing that – the cell relying on unnatural information to survive, rather than doing something new yet," he says, "but that's where we are headed."
4) Bacteria that can deliver cancer-killing drugs inside tumors.
Researcher Jeff Hasty at UCSD has engineered a strain of Salmonella bacteria to penetrate cancer tumors and deliver drugs that stop their growth. His approach is especially clever because it solves a major problem in cancer drug delivery: chemotherapy relies on blood vessels for transit, but blood vessels don't exist deep inside tumors. Using this fact to his advantage, Hasty and his team designed bacteria that can sneak drugs all the way into a tumor and then self-destruct, taking the tumor down in the process.
So far, the treatment in mice has been successful; their tumors stopped growing after they were given the bacteria, and along with the use of chemotherapy, their life expectancy increased by half.
Many questions remain in terms of applicability to tumors in human beings, but the notion of a bacterial therapy remains a promising clinical approach for treating cancer in the future.
Craft beer experts couldn't tell the difference between beer brewed with regular vs. recycled water.
5) Bacteria that can convert wastewater into drinkable water.
Boston-based company Cambrian Innovation has a patented product called the EcoVolt MINI that uses microbes to generate energy through contact with electrodes. The company has collaborated with breweries across the country, taking their waste water and converting it to clean water and clean energy. Through the company's bioelectrochemical system, microbes eat the contaminants in the wastewater, and as a byproduct they produce methane, which can be converted to heat and power; in some cases, the process generates enough energy to send some back to the brewery.
"The main goal of the system is to produce cleaner water; the energy is an added product," explains Claire Aviles, Cambrian's marketing and communications manager.
The wastewater treatment is so effective that the water can be made suitable for reuse. One brewery client, for example, recently experimented with using the recycled water to brew a beer at a festival in California. They used the same recipe for two beers—one with typical city water and one with recycled water from Cambrian's system—and offered a side-by-side taste test to consumers and craft beer experts alike.
"Most people couldn't tell which was which," Aviles says.
In fact, most of the tasters preferred the beer brewed with the recycled water.
Turns out bacteria aren't always dirty after all.
Kira Peikoff was the editor-in-chief of Leaps.org from 2017 to 2021. As a journalist, her work has appeared in The New York Times, Newsweek, Nautilus, Popular Mechanics, The New York Academy of Sciences, and other outlets. She is also the author of four suspense novels that explore controversial issues arising from scientific innovation: Living Proof, No Time to Die, Die Again Tomorrow, and Mother Knows Best. Peikoff holds a B.A. in Journalism from New York University and an M.S. in Bioethics from Columbia University. She lives in New Jersey with her husband and two young sons. Follow her on Twitter @KiraPeikoff.
Autonomous, indoor farming gives a boost to crops
Artificial Intelligence is already helping to grow some of the food we eat.
The glass-encased cabinet looks like a display meant to hold reasonably priced watches, or drugstore beauty creams shipped from France. But instead of this stagnant merchandise, each of its five shelves is overgrown with leaves — moss-soft pea sprouts, spikes of Lolla rosa lettuces, pale bok choy, dark kale, purple basil or red-veined sorrel or green wisps of dill. The glass structure isn’t a cabinet, but rather a “micro farm.”
The gadget is on display at the Richmond, Virginia headquarters of Babylon Micro-Farms, a company that aims to make indoor farming in the U.S. more accessible and sustainable. Babylon’s soilless hydroponic growing system, which feeds plants via nutrient-enriched water, allows chefs on cruise ships, cafeterias and elsewhere to provide home-grown produce to patrons, just seconds after it’s harvested. Currently, there are over 200 functioning systems, either sold or leased to customers, and more of them are on the way.
The chef-farmers choose from among 45 types of herb and leafy-greens seeds, plop them into grow trays, and a few weeks later they pick and serve. While success is predicated on at least a small amount of these humans’ care, the systems are autonomously surveilled round-the-clock from Babylon’s base of operations. And artificial intelligence is helping to run the show.
Babylon piloted the use of specialized cameras that take pictures in different spectrums to gather some less-obvious visual data about plants’ wellbeing and alert people if something seems off.
Imagine consistently perfect greens and tomatoes and strawberries, grown hyper-locally, using less water, without chemicals or environmental contaminants. This is the hefty promise of controlled environment agriculture (CEA) — basically, indoor farms that can be hydroponic, aeroponic (plant roots are suspended and fed through misting), or aquaponic (where fish play a role in fertilizing vegetables). But whether they grow 4,160 leafy-green servings per year, like one Babylon farm, or millions of servings, like some of the large, centralized facilities starting to supply supermarkets across the U.S., they seek to minimize failure as much as possible.
Babylon’s soilless hydroponic growing system
Courtesy Babylon Micro-Farms
Here, AI is starting to play a pivotal role. CEA growers use it to help “make sense of what’s happening” to the plants in their care, says Scott Lowman, vice president of applied research at the Institute for Advanced Learning and Research (IALR) in Virginia, a state that’s investing heavily in CEA companies. And although these companies say they’re not aiming for a future with zero human employees, AI is certainly poised to take a lot of human farming intervention out of the equation — for better and worse.
Most of these companies are compiling their own data sets to identify anything that might block the success of their systems. Babylon had already integrated sensor data into its farms to measure heat and humidity, the nutrient content of water, and the amount of light plants receive. Last year, they got a National Science Foundation grant that allowed them to pilot the use of specialized cameras that take pictures in different spectrums to gather some less-obvious visual data about plants’ wellbeing and alert people if something seems off. “Will this plant be healthy tomorrow? Are there things…that the human eye can't see that the plant starts expressing?” says Amandeep Ratte, the company’s head of data science. “If our system can say, Hey, this plant is unhealthy, we can reach out to [users] preemptively about what they’re doing wrong, or is there a disease at the farm?” Ratte says. The earlier the better, to avoid crop failures.
Natural light accounts for 70 percent of Greenswell Growers’ energy use on a sunny day.
Courtesy Greenswell Growers
IALR’s Lowman says that other CEA companies are developing their AI systems to account for the different crops they grow — lettuces come in all shapes and sizes, after all, and each has different growing needs than, for example, tomatoes. The ways they run their operations differs also. Babylon is unusual in its decentralized structure. But centralized growing systems with one main location have variabilities, too. AeroFarms, which recently declared bankruptcy but will continue to run its 140,000-square foot vertical operation in Danville, Virginia, is entirely enclosed and reliant on the intense violet glow of grow lights to produce microgreens.
Different companies have different data needs. What data is essential to AeroFarms isn’t quite the same as for Greenswell Growers located in Goochland County, Virginia. Raising four kinds of lettuce in a 77,000-square-foot automated hydroponic greenhouse, the vagaries of naturally available light, which accounts for 70 percent of Greenswell’s energy use on a sunny day, affect operations. Their tech needs to account for “outside weather impacts,” says president Carl Gupton. “What adjustments do we have to make inside of the greenhouse to offset what's going on outside environmentally, to give that plant optimal conditions? When it's 85 percent humidity outside, the system needs to do X, Y and Z to get the conditions that we want inside.”
AI will help identify diseases, as well as when a plant is thirsty or overly hydrated, when it needs more or less calcium, phosphorous, nitrogen.
Nevertheless, every CEA system has the same core needs — consistent yield of high quality crops to keep up year-round supply to customers. Additionally, “Everybody’s got the same set of problems,” Gupton says. Pests may come into a facility with seeds. A disease called pythium, one of the most common in CEA, can damage plant roots. “Then you have root disease pressures that can also come internally — a change in [growing] substrate can change the way the plant performs,” Gupton says.
AI will help identify diseases, as well as when a plant is thirsty or overly hydrated, when it needs more or less calcium, phosphorous, nitrogen. So, while companies amass their own hyper-specific data sets, Lowman foresees a time within the next decade “when there will be some type of [open-source] database that has the most common types of plant stress identified” that growers will be able to tap into. Such databases will “create a community and move the science forward,” says Lowman.
In fact, IALR is working on assembling images for just such a database now. On so-called “smart tables” inside an Institute lab, a team is growing greens and subjects them to various stressors. Then, they’re administering treatments while taking images of every plant every 15 minutes, says Lowman. Some experiments generate 80,000 images; the challenge lies in analyzing and annotating the vast trove of them, marking each one to reflect outcome—for example increasing the phosphate delivery and the plant’s response to it. Eventually, they’ll be fed into AI systems to help them learn.
For all the enthusiasm surrounding this technology, it’s not without downsides. Training just one AI system can emit over 250,000 pounds of carbon dioxide, according to MIT Technology Review. AI could also be used “to enhance environmental benefit for CEA and optimize [its] energy consumption,” says Rozita Dara, a computer science professor at the University of Guelph in Canada, specializing in AI and data governance, “but we first need to collect data to measure [it].”
The chef-farmers can choose from 45 types of herb and leafy-greens seeds.
Courtesy Babylon Micro-Farms
Any system connected to the Internet of Things is also vulnerable to hacking; if CEA grows to the point where “there are many of these similar farms, and you're depending on feeding a population based on those, it would be quite scary,” Dara says. And there are privacy concerns, too, in systems where imaging is happening constantly. It’s partly for this reason, says Babylon’s Ratte, that the company’s in-farm cameras all “face down into the trays, so the only thing [visible] is pictures of plants.”
Tweaks to improve AI for CEA are happening all the time. Greenswell made its first harvest in 2022 and now has annual data points they can use to start making more intelligent choices about how to feed, water, and supply light to plants, says Gupton. Ratte says he’s confident Babylon’s system can already “get our customers reliable harvests. But in terms of how far we have to go, it's a different problem,” he says. For example, if AI could detect whether the farm is mostly empty—meaning the farm’s user hasn’t planted a new crop of greens—it can alert Babylon to check “what's going on with engagement with this user?” Ratte says. “Do they need more training? Did the main person responsible for the farm quit?”
Lowman says more automation is coming, offering greater ability for systems to identify problems and mitigate them on the spot. “We still have to develop datasets that are specific, so you can have a very clear control plan, [because] artificial intelligence is only as smart as what we tell it, and in plant science, there's so much variation,” he says. He believes AI’s next level will be “looking at those first early days of plant growth: when the seed germinates, how fast it germinates, what it looks like when it germinates.” Imaging all that and pairing it with AI, “can be a really powerful tool, for sure.”
Scientists make progress with growing organs for transplants
Researchers from the University of Cambridge have laid the foundations for growing synthetic embryos that could develop a beating heart, gut and brain.
Story by Big Think
For over a century, scientists have dreamed of growing human organs sans humans. This technology could put an end to the scarcity of organs for transplants. But that’s just the tip of the iceberg. The capability to grow fully functional organs would revolutionize research. For example, scientists could observe mysterious biological processes, such as how human cells and organs develop a disease and respond (or fail to respond) to medication without involving human subjects.
Recently, a team of researchers from the University of Cambridge has laid the foundations not just for growing functional organs but functional synthetic embryos capable of developing a beating heart, gut, and brain. Their report was published in Nature.
The organoid revolution
In 1981, scientists discovered how to keep stem cells alive. This was a significant breakthrough, as stem cells have notoriously rigorous demands. Nevertheless, stem cells remained a relatively niche research area, mainly because scientists didn’t know how to convince the cells to turn into other cells.
Then, in 1987, scientists embedded isolated stem cells in a gelatinous protein mixture called Matrigel, which simulated the three-dimensional environment of animal tissue. The cells thrived, but they also did something remarkable: they created breast tissue capable of producing milk proteins. This was the first organoid — a clump of cells that behave and function like a real organ. The organoid revolution had begun, and it all started with a boob in Jello.
For the next 20 years, it was rare to find a scientist who identified as an “organoid researcher,” but there were many “stem cell researchers” who wanted to figure out how to turn stem cells into other cells. Eventually, they discovered the signals (called growth factors) that stem cells require to differentiate into other types of cells.
For a human embryo (and its organs) to develop successfully, there needs to be a “dialogue” between these three types of stem cells.
By the end of the 2000s, researchers began combining stem cells, Matrigel, and the newly characterized growth factors to create dozens of organoids, from liver organoids capable of producing the bile salts necessary for digesting fat to brain organoids with components that resemble eyes, the spinal cord, and arguably, the beginnings of sentience.
Synthetic embryos
Organoids possess an intrinsic flaw: they are organ-like. They share some characteristics with real organs, making them powerful tools for research. However, no one has found a way to create an organoid with all the characteristics and functions of a real organ. But Magdalena Żernicka-Goetz, a developmental biologist, might have set the foundation for that discovery.
Żernicka-Goetz hypothesized that organoids fail to develop into fully functional organs because organs develop as a collective. Organoid research often uses embryonic stem cells, which are the cells from which the developing organism is created. However, there are two other types of stem cells in an early embryo: stem cells that become the placenta and those that become the yolk sac (where the embryo grows and gets its nutrients in early development). For a human embryo (and its organs) to develop successfully, there needs to be a “dialogue” between these three types of stem cells. In other words, Żernicka-Goetz suspected the best way to grow a functional organoid was to produce a synthetic embryoid.
As described in the aforementioned Nature paper, Żernicka-Goetz and her team mimicked the embryonic environment by mixing these three types of stem cells from mice. Amazingly, the stem cells self-organized into structures and progressed through the successive developmental stages until they had beating hearts and the foundations of the brain.
“Our mouse embryo model not only develops a brain, but also a beating heart [and] all the components that go on to make up the body,” said Żernicka-Goetz. “It’s just unbelievable that we’ve got this far. This has been the dream of our community for years and major focus of our work for a decade and finally we’ve done it.”
If the methods developed by Żernicka-Goetz’s team are successful with human stem cells, scientists someday could use them to guide the development of synthetic organs for patients awaiting transplants. It also opens the door to studying how embryos develop during pregnancy.
This article originally appeared on Big Think, home of the brightest minds and biggest ideas of all time.