The Meat Industry Is Polluting the Planet. Bug Burgers Could Save It.

Lab-grown insect meat could be the protein source of the future.

(© alfa27/Adobe)


Agriculture in the 21st century is not as simple as it once was. With a population seven billion strong, a climate in crisis, and sustainability in farming practices on everyone's radar, figuring out how to feed the masses without destroying the Earth is a pressing concern.

Tufts scientists argue that insect cells may be better suited to lab-created meat protein than traditional farm animal cells.

In addition to low-emission cows and drone pollinators, there's a promising new solution on the table. How does "lab-grown insect meat" grab you?

Writing in Frontiers in Sustainable Food Systems, researchers at Tufts University say insects that are fed plants and genetically modified for maximum growth, nutrition, and flavor could be the best, greenest alternative to our current livestock farming practices. This lab-grown protein source could produce high volume, nutritious food without the massive resources required for traditional animal agriculture.

"Due to the environmental, public health, and animal welfare concerns associated with our current livestock system, it is vital to develop more sustainable food production methods," says lead author Natalie Rubio. Could insect meat be the key?

Next Up

New sustainable food production includes what's called "cellular agriculture," an emerging industry and field of study in which meat and dairy are produced via cells in a lab instead of whole animals. So far, scientists have primarily focused on bovine, porcine, and avian cells to create this "cultured meat."

But the Tufts scientists argue that insect cells may be better suited to lab-created meat protein than traditional farm animal cells.

"Compared to cultured mammalian, avian, and other vertebrate cells, insect cell cultures require fewer resources and less energy-intensive environmental control, as they have lower glucose requirements and can thrive in a wider range of temperature, pH, oxygen, and osmolarity conditions," reports Rubio.

"Alterations necessary for large-scale production are also simpler to achieve with insect cells, which are currently used for biomanufacturing of insecticides, drugs, and vaccines," she adds.

They still have some details to hash out, however, including how to make cultured insect meat more like the steak and chicken we're all familiar with.

"Despite this immense potential, cultured insect meat isn't ready for consumption," says Rubio. "Research is ongoing to master two key processes: controlling development of insect cells into muscle and fat, and combining these in 3D cultures with a meat-like texture." They are currently experimenting with mushroom-derived fiber to tackle the latter.

People would still be able to eat meat—it would just come from a different source.

Open Questions

As the report points out, one thing that makes cellular agriculture an attractive alternative to high-density animal farming is that it doesn't require consumers to change their behaviors. People would still be able to eat meat—it would just come from a different source.

But the big question remains: How will lab-grown insect meat taste? Will the buggers really taste as good as burgers?

And, of course, there's the "ew" factor. Meat alternatives have proven to work for some people—Tofurky is still in business, after all—but it may be a hard sell to get the masses to jump on board with eating bugs. Consuming creepy crawlies sounds simply unpalatable to many, and the term "lab-grown, cellular insect meat" doesn't help much. Perhaps an entirely new nomenclature is in order.

Another question is whether or not folks will trust such scientifically-created food. People already use the term "frankenfood" to refer to genetic modification -- even though the vast majority of the corn and soybeans planted in the U.S. today are genetically engineered, and other major crops with GM varieties include potatoes, apples, squash, and papayas. Still, combining GM technology with eating insects may be a hard sell.

However, we're all going to have to get used to trying new things if we want to leave a habitable home for our children. If a lab-grown bug burger can save the planet, maybe it's worth a shot.

Annie Reneau
Annie is a writer, wife, and mother of three with a penchant for coffee, wanderlust, and practical idealism. On good days, she enjoys the beautiful struggle of maintaining a well-balanced life. On bad days, she binges on chocolate and dreams of traveling the world alone.
Get our top stories twice a month
Follow us on

David Kurtz making DNA sequencing libraries in his lab.

Photo credit: Florian Scherer

When David M. Kurtz was doing his clinical fellowship at Stanford University Medical Center in 2009, specializing in lymphoma treatments, he found himself grappling with a question no one could answer. A typical regimen for these blood cancers prescribed six cycles of chemotherapy, but no one knew why. "The number seemed to be drawn out of a hat," Kurtz says. Some patients felt much better after just two doses, but had to endure the toxic effects of the entire course. For some elderly patients, the side effects of chemo are so harsh, they alone can kill. Others appeared to be cancer-free on the CT scans after the requisite six but then succumbed to it months later.

"Anecdotally, one patient decided to stop therapy after one dose because he felt it was so toxic that he opted for hospice instead," says Kurtz, now an oncologist at the center. "Five years down the road, he was alive and well. For him, just one dose was enough." Others would return for their one-year check up and find that their tumors grew back. Kurtz felt that while CT scans and MRIs were powerful tools, they weren't perfect ones. They couldn't tell him if there were any cancer cells left, stealthily waiting to germinate again. The scans only showed the tumor once it was back.

Blood cancers claim about 68,000 people a year, with a new diagnosis made about every three minutes, according to the Leukemia Research Foundation. For patients with B-cell lymphoma, which Kurtz focuses on, the survival chances are better than for some others. About 60 percent are cured, but the remaining 40 percent will relapse—possibly because they will have a negative CT scan, but still harbor malignant cells. "You can't see this on imaging," says Michael Green, who also treats blood cancers at University of Texas MD Anderson Medical Center.

Keep Reading Keep Reading
Lina Zeldovich
Lina Zeldovich has written about science, medicine and technology for Scientific American, Reader’s Digest, Mosaic Science and other publications. She’s an alumna of Columbia University School of Journalism and the author of the upcoming book, The Other Dark Matter: The Science and Business of Turning Waste into Wealth, from Chicago University Press. You can find her on http://linazeldovich.com/ and @linazeldovich.


Reporter Michaela Haas takes Aptera's Sol car out for a test drive in San Diego, Calif.

Courtesy Haas

The white two-seater car that rolls down the street in the Sorrento Valley of San Diego looks like a futuristic batmobile, with its long aerodynamic tail and curved underbelly. Called 'Sol' (Spanish for "sun"), it runs solely on solar and could be the future of green cars. Its maker, the California startup Aptera, has announced the production of Sol, the world's first mass-produced solar vehicle, by the end of this year. Aptera co-founder Chris Anthony points to the sky as he says, "On this sunny California day, there is ample fuel. You never need to charge the car."

If you live in a sunny state like California or Florida, you might never need to plug in the streamlined Sol because the solar panels recharge while driving and parked. Its 60-mile range is more than the average commuter needs. For cloudy weather, battery packs can be recharged electronically for a range of up to 1,000 miles. The ultra-aerodynamic shape made of lightweight materials such as carbon, Kevlar, and hemp makes the Sol four times more energy-efficient than a Tesla, according to Aptera. "The material is seven times stronger than steel and even survives hail or an angry ex-girlfriend," Anthony promises.

Keep Reading Keep Reading
Michaela Haas
Michaela Haas, PhD, is an award-winning reporter and author, most recently of Bouncing Forward: The Art and Science of Cultivating Resilience (Atria). Her work has been published in the New York Times, Mother Jones, the Huffington Post, and numerous other media. Find her at www.MichaelaHaas.com and Twitter @MichaelaHaas!