The Meat Industry Is Polluting the Planet. Bug Burgers Could Save It.

Lab-grown insect meat could be the protein source of the future.

(© alfa27/Adobe)


Agriculture in the 21st century is not as simple as it once was. With a population seven billion strong, a climate in crisis, and sustainability in farming practices on everyone's radar, figuring out how to feed the masses without destroying the Earth is a pressing concern.

Tufts scientists argue that insect cells may be better suited to lab-created meat protein than traditional farm animal cells.

In addition to low-emission cows and drone pollinators, there's a promising new solution on the table. How does "lab-grown insect meat" grab you?

Writing in Frontiers in Sustainable Food Systems, researchers at Tufts University say insects that are fed plants and genetically modified for maximum growth, nutrition, and flavor could be the best, greenest alternative to our current livestock farming practices. This lab-grown protein source could produce high volume, nutritious food without the massive resources required for traditional animal agriculture.

"Due to the environmental, public health, and animal welfare concerns associated with our current livestock system, it is vital to develop more sustainable food production methods," says lead author Natalie Rubio. Could insect meat be the key?

Next Up

New sustainable food production includes what's called "cellular agriculture," an emerging industry and field of study in which meat and dairy are produced via cells in a lab instead of whole animals. So far, scientists have primarily focused on bovine, porcine, and avian cells to create this "cultured meat."

But the Tufts scientists argue that insect cells may be better suited to lab-created meat protein than traditional farm animal cells.

"Compared to cultured mammalian, avian, and other vertebrate cells, insect cell cultures require fewer resources and less energy-intensive environmental control, as they have lower glucose requirements and can thrive in a wider range of temperature, pH, oxygen, and osmolarity conditions," reports Rubio.

"Alterations necessary for large-scale production are also simpler to achieve with insect cells, which are currently used for biomanufacturing of insecticides, drugs, and vaccines," she adds.

They still have some details to hash out, however, including how to make cultured insect meat more like the steak and chicken we're all familiar with.

"Despite this immense potential, cultured insect meat isn't ready for consumption," says Rubio. "Research is ongoing to master two key processes: controlling development of insect cells into muscle and fat, and combining these in 3D cultures with a meat-like texture." They are currently experimenting with mushroom-derived fiber to tackle the latter.

People would still be able to eat meat—it would just come from a different source.

Open Questions

As the report points out, one thing that makes cellular agriculture an attractive alternative to high-density animal farming is that it doesn't require consumers to change their behaviors. People would still be able to eat meat—it would just come from a different source.

But the big question remains: How will lab-grown insect meat taste? Will the buggers really taste as good as burgers?

And, of course, there's the "ew" factor. Meat alternatives have proven to work for some people—Tofurky is still in business, after all—but it may be a hard sell to get the masses to jump on board with eating bugs. Consuming creepy crawlies sounds simply unpalatable to many, and the term "lab-grown, cellular insect meat" doesn't help much. Perhaps an entirely new nomenclature is in order.

Another question is whether or not folks will trust such scientifically-created food. People already use the term "frankenfood" to refer to genetic modification -- even though the vast majority of the corn and soybeans planted in the U.S. today are genetically engineered, and other major crops with GM varieties include potatoes, apples, squash, and papayas. Still, combining GM technology with eating insects may be a hard sell.

However, we're all going to have to get used to trying new things if we want to leave a habitable home for our children. If a lab-grown bug burger can save the planet, maybe it's worth a shot.

Annie Reneau
Annie is a writer, wife, and mother of three with a penchant for coffee, wanderlust, and practical idealism. On good days, she enjoys the beautiful struggle of maintaining a well-balanced life. On bad days, she binges on chocolate and dreams of traveling the world alone.
Get our top stories twice a month
Follow us on
Brain Cancer Chromosomes. Chromosomes prepared from a malignant glioblastoma visualized by spectral karyotyping (SKY) reveal an enormous degree of chromosomal instability -- a hallmark of cancer. Created by Thomas Ried, 2014

Glioblastoma is an aggressive and deadly brain cancer, causing more than 10,000 deaths in the US per year. In the last 30 years there has only been limited improvement in the survival rate despite advances in radiation therapy and chemotherapy. Today the typical survival rate is just 14 months and that extra time is spent suffering from the adverse and often brutal effects of radiation and chemotherapy.

Scientists are trying to design more effective treatments for glioblastoma with fewer side effects. Now, a team at the Department of Neurosurgery at Houston Methodist Hospital has created a magnetic helmet-based treatment called oncomagnetic therapy: a promising non-invasive treatment for shrinking cancerous tumors. In the first patient tried, the device was able to reduce the tumor of a glioblastoma patient by 31%. The researchers caution, however, that much more research is needed to determine its safety and effectiveness.

Keep Reading Keep Reading
Sarah Philip
Sarah Philip is a London-based freelance journalist who writes about science, film and TV. You can follow her on Twitter @sarahph1lip.

Astronaut and Expedition 64 Flight Engineer Soichi Noguchi of the Japan Aerospace Exploration Agency displays Extra Dwarf Pak Choi plants growing aboard the International Space Station. The plants were grown for the Veggie study which is exploring space agriculture as a way to sustain astronauts on future missions to the Moon or Mars.

Johnson Space Center/NASA

Astronauts at the International Space Station today depend on pre-packaged, freeze-dried food, plus some fresh produce thanks to regular resupply missions. This supply chain, however, will not be available on trips further out, such as the moon or Mars. So what are astronauts on long missions going to eat?

Going by the options available now, says Christel Paille, an engineer at the European Space Agency, a lunar expedition is likely to have only dehydrated foods. “So no more fresh product, and a limited amount of already hydrated product in cans.”

For the Mars mission, the situation is a bit more complex, she says. Prepackaged food could still constitute most of their food, “but combined with [on site] production of certain food products…to get them fresh.” A Mars mission isn’t right around the corner, but scientists are currently working on solutions for how to feed those astronauts. A number of boundary-pushing efforts are now underway.

Keep Reading Keep Reading
Payal Dhar
Payal is a writer based in New Delhi who has been covering science, technology, and society since 1998.