Bridget Snell traveled to Mexico to access an unapproved stem cell therapy for MS.

(Photo credits Suzanne Ouellette, left, and Christian Fregnan on Unsplash)

When Bridget Snell found out she had multiple sclerosis, she knew she would put up a fight. The 45 year-old mother of two, who lives in Duxbury, Mass., researched options to slow the progress of the disease. The methods she had been trying were invasive, often with side effects of their own.

An estimated 2.2 million Americans will travel abroad for medical care in 2020.

Then she stumbled upon autologous hematopoietic stem cell transplantation (AHSCT), an experimental and controversial procedure that uses the patient's own stem cells to try to halt the progress of the disease. The FDA has not approved this procedure and last year issued a warning about unapproved stem cell therapies.

Despite the lack of established science, Snell weighed her options and decided she would undergo the procedure at Clinica Ruiz, a private clinic in Puebla, Mexico, which boasts of the largest volume of cases in the world using the procedure to treat MS. In April 2018, she went to Mexico for treatment, returned home in a month, and continues to do well.

But a positive outcome is far from assured, says Sheldon Krimsky, adjunct professor in the Department of Public Health and Community Medicine at the Tufts School of Medicine.

"Often you can't get a good sense of what the quality of treatment is in another country," Krimsky says, adding that many companies promise procedures whose results have not been clinically validated. "Unfortunately, people are very easily persuaded by hope."

Traveling for Medical Care

Snell is one of many Americans who have traveled abroad to access medical care. Patients Beyond Borders, a medical tourism consultancy, estimates that 2.2 million Americans will do so in 2020. A 2018 BCC report projected a five-year compounded annual industry growth rate of 13.2 percent. Adding to the demand is the aging population, which is expected to reach 95 million people by 2060 – nearly double the number in 2018.

While Snell traveled to Mexico to try a procedure that was not yet available in the United States, other patients do so for a variety of reasons, primarily cost and speed of access. For example, despite having "pretty good insurance coverage," Washington resident Soniya Gadgil needed dental procedures that would have cost thousands of dollars out-of-pocket. An India native, she decided to travel to Pune, India to visit her parents -- and while there, she got the two root canals and implant that she needed. Gadgil saved 60 percent on the final bill.

Leaving the country for medical care is not restricted to dental work or FDA-banned procedures either. Patients visit countries around the world — South America, Central America, and the Caribbean top the list — for a number of other problems, such as knee and hip replacements and bariatric operations. The most common procedures sought abroad are for dentistry, cosmetic surgery, and cardiac conditions.

Traveling abroad to access less expensive procedures is a damning indictment of healthcare delivery in the United States, says Dr. Leigh Turner, associate professor at the Center for Bioethics at the University of Minnesota. "We have people who are being forced out of the system because of high costs. Collectively it suggests a real structural problem in terms of the organization of healthcare in the United States," Turner says.

The Growth of the Online Marketplace

Nevertheless, medical tourism is booming and a number of online businesses now meet patients' demand for discovery and facilitation of medical care abroad, like,, and Wellness Travels.

Anurav Rane, CEO and Founder of, says the company presents each potential client with options, a la Expedia. A knee replacement in India costs $2,500, a significantly cheaper option even with a $1,110 round-trip airfare from the United States, Rane says. The average cost for an inpatient total knee replacement in the United States in 2019 was a little more $30,000.

Once the client chooses a specific procedure at a specific hospital, the company facilitates the necessary groundwork including the medical visa, tickets, hotel stay, booking the procedure and pre and post-op stay, and consults with the surgeons or doctors even before arrival. "The hassle of planning is on us," Rane says. Once patients are settled in the accommodations, they undergo the procedure.

Playing in the Legal Shadows

The online marketplace companies and the medical team execute an orchestrated dance – but what happens if the patient is harmed during or after the procedure?

Turner says that medical malpractice, if it occurs, can be difficult to pursue abroad. "There are countries where the courts are notoriously slow and it's very difficult to get any kind of meaningful action and settlements," he says, even if the claims have a legitimate basis.

The industry's biggest challenge is trust.

Snell signed a waiver absolving her surgeons in Mexico of any legal claims. But, she points out, that's standard process even for procedures in the United States. "I signed just as many waivers as I would going into any surgery [in the US]."

While that might well be true, Turner argues, Americans don't waive legal rights when they sign consent forms. "There are some protections for patients here in the United States."

Beyond U.S. Medical Tourism

As expected, it's not just Americans who travel abroad for medical care. Lithuania-based Wellness Travels sees a significant percentage of its clients from the EU. has 15,000 surgeons and doctors from 12 countries in its database. Egypt-based Doctoorum works with professionals in its own country and attracts clients from the Middle East. It is looking to expand to include doctors from Jordan and India, among other countries.

The term "tourism" is misleading here because it muddies the picture about what post-op should really look like, says Gediminas Kondrackis of Wellness Travels. "Unfortunately a lot of medical travel facilitators mislead their clients by advertising beach holiday packages and the like. Post-op is really about quiet recovery inside for a few days; being out in the sun is not advisable."

The industry's biggest challenge is trust. "The dentist I went to is actually a friend of mine who has a successful practice for several years," says Gadgil, the Washington resident who had dental work done in India. "I'd hesitate to go to someone I don't know or to a place I have no experience with." Her apprehensions are not unusual. After all, anxiety is an expected reaction to any surgery. Word-of-mouth, cost savings, and thorough research may alleviate some of these trust issues.

"I had natural apprehensions and would have had them had I gone up the road to Brigham and Women's (in Boston) just as I did over the border," Snell says, "but I had done my homework extensively. That took a lot of the fear out of it."

Medical tourism will only increase, predicts Kondrackis. "There is still a lot of room to grow. Higher numbers of medical travelers could help reduce the strain on local healthcare systems by reducing wait times and controlling costs."

While patients who have benefited from medical tourism swear by it, the best cure would be to start at home by establishing healthcare equity, Krimsky says.

On the flip side, says Turner, it is debatable whether medical tourism actually benefits host countries, where local residents might get priced out of procedures at these exclusive clinics. Even if laws in host countries such as India might mandate "charity care" for poorer local patients, that does not always happen, Turner says. The trickle-down theory that these more expensive clinics will broaden access to care is often a pipe dream, he adds.

While patients who have benefited from medical tourism swear by it, the best cure would be to start at home by establishing healthcare equity, Krimsky says. "Now if we had universal healthcare in the United States," he adds, "that would be an entirely different story."

Or maybe not. Rane, of, has observed an influx of patients to India from Canada, a country with universal healthcare.

The reason they say they travel for care? Long wait times for procedures.

Poornima Apte
Poornima Apte is an engineer turned award-winning freelance writer with clips in publications such as OZY, The Week, TechCrunch, JSTOR Daily and more.

Flags of America and China illuminated by light bulbs with a question mark between them.

(© spyrakot/Fotolia)

Over the past two millennia, Chinese ingenuity has spawned some of humanity's most consequential inventions. Without gunpowder, guns, bombs, and rockets; without paper, printing, and money printed on paper; and without the compass, which enabled ships to navigate the open ocean, modern civilization might never have been born.

Today, a specter is haunting the developed world: Chinese innovation dominance. And the results have been so spectacular that the United States feels its preeminence threatened.

Yet China lapsed into cultural and technological stagnation during the Qing dynasty, just as the Scientific Revolution was transforming Europe. Western colonial incursions and a series of failed rebellions further sapped the Celestial Empire's capacity for innovation. By the mid-20th century, when the Communist triumph led to a devastating famine and years of bloody political turmoil, practically the only intellectual property China could offer for export was Mao's Little Red Book.

After Deng Xiaoping took power in 1978, launching a transition from a rigidly planned economy to a semi-capitalist one, China's factories began pumping out goods for foreign consumption. Still, originality remained a low priority. The phrase "Made in China" came to be synonymous with "cheap knockoff."

Today, however, a specter is haunting the developed world: Chinese innovation dominance. It first wafted into view in 2006, when the government announced an "indigenous innovation" campaign, dedicated to establishing China as a technology powerhouse by 2020—and a global leader by 2050—as part of its Medium- and Long-Term National Plan for Science and Technology Development. Since then, an array of initiatives have sought to unleash what pundits often call the Chinese "tech dragon," whether in individual industries, such as semiconductors or artificial intelligence, or across the board (as with the Made in China 2025 project, inaugurated in 2015). These efforts draw on a well-stocked bureaucratic arsenal: state-directed financing; strategic mergers and acquisitions; competition policies designed to boost domestic companies and hobble foreign rivals; buy-Chinese procurement policies; cash incentives for companies to file patents; subsidies for academic researchers in favored fields.

The results have been spectacular—so much so that the United States feels its preeminence threatened. Voices across the political spectrum are calling for emergency measures, including a clampdown on technology transfers, capital investment, and Chinese students' ability to study abroad. But are the fears driving such proposals justified?

"We've flipped from thinking China is incapable of anything but imitation to thinking China is about to eat our lunch," says Kaiser Kuo, host of the Sinica podcast at, who recently returned to the U.S after 20 years in Beijing—the last six as director of international communications for the tech giant Baidu. Like some other veteran China-watchers, Kuo believes neither extreme reflects reality. "We're in as much danger now of overestimating China's innovative capacity," he warns, "as we were a few years ago of underestimating it."

A Lab and Tech-Business Bonanza

By many measures, China's innovation renaissance is mind-boggling. Spending on research and development as a percentage of gross domestic product nearly quadrupled between 1996 and 2016, from .56 percent to 2.1 percent; during the same period, spending in the United States rose by just .3 percentage points, from 2.44 to 2.79 percent of GDP. China is now second only to the U.S. in total R&D spending, accounting for 21 percent of the global total of $2 trillion, according to a report released in January by the National Science Foundation. In 2016, the number of scientific publications from China exceeded those from the U.S. for the first time, by 426,000 to 409,000. Chinese researchers are blazing new trails on the frontiers of cloning, stem cell medicine, gene editing, and quantum computing. Chinese patent applications have soared from 170,000 to nearly 3 million since 2000; the country now files almost as many international patents as the U.S. and Japan, and more than Germany and South Korea. Between 2008 and 2017, two Chinese tech firms—Huawei and ZTE—traded places as the world's top patent filer in six out of nine years.

"China is still in its Star Trek phase, while we're in our Black Mirror phase." Yet there are formidable barriers to China beating America in the innovation race—or even catching up anytime soon.

Accompanying this lab-based ferment is a tech-business bonanza. China's three biggest internet companies, Baidu, Alibaba Group and Tencent Holdings (known collectively as BAT), have become global titans of search, e-commerce, mobile payments, gaming, and social media. Da-Jiang Innovations in Science and Technology (DJI) controls more than 70 percent of the world's commercial drone market. Of the planet's 262 "unicorns" (startups worth more than a billion dollars), about one-third are Chinese. The country attracted $77 billion in venture capital investment between 2014 and 2016, according to Fortune, and is now among the top three markets for VC in emerging technologies including AI, virtual reality, autonomous vehicles, and 3D printing.

These developments have fueled a buoyant techno-optimism in China that contrasts sharply with the darker view increasingly prevalent in the West—in part, perhaps, because China's historic limits on civil liberties have inured the populace to the intrusive implications of, say, facial recognition technology or social-credit software, which are already being used to tighten government control. "China is still in its Star Trek phase, while we're in our Black Mirror phase," Kuo observes. By contrast with Americans' ambivalent attitudes toward Facebook founder Mark Zuckerberg or Amazon's Jeff Bezos, he adds, most Chinese regard tech entrepreneurs like Baidu's Robin Li and Alibaba's Jack Ma as "flat-out heroes."

Yet there are formidable barriers to China beating America in the innovation race—or even catching up anytime soon. Many are catalogued in The Fat Tech Dragon, a 2017 monograph by Scott Kennedy, deputy director of the Freeman Chair in China Studies and director of the Project on Chinese Business and Political Economy at the Center for Strategic and International Studies. Among the obstacles, Kennedy writes, are "an education system that encourages deference to authority and does not prepare students to be creative and take risks, a financial system that disproportionately funnels funds to undeserving state-owned enterprises… and a market structure where profits can be made through a low-margin, high-volume strategy or through political connections."

China's R&D money, Kennedy points out, is mostly showered on the "D": of the $209 billion spent in 2015, only 5 percent went toward basic research, 10.8 percent toward applied research, and a massive 84.2 percent toward development. While fully half of venture capital in the States goes to early-stage startups, the figure for China is under 20 percent; true "angel" investors are scarce. Likewise, only 21 percent of Chinese patents are for original inventions, as opposed to tweaks of existing technologies. Most problematic, the domestic value of patents in China is strikingly low. In 2015, the country's patent licensing generated revenues of just $1.75 billion, compared to $115 billion for IP licensing in the U.S. in 2012 (the most recent year for which data is available). In short, Kennedy concludes, "China may now be a 'large' IP country, but it is still a 'weak' one."

"[The Chinese] are trying very hard to keep the economy from crashing, but it'll happen eventually. Then there will be a major, major contraction."

Anne Stevenson-Yang, co-founder and research director of J Capital Research, and a leading China analyst, sees another potential stumbling block: the government's obsession with neck-snapping GDP growth. "What China does is to determine, 'Our GDP growth will be X,' and then it generates enough investment to create X," Stevenson-Yang explains. To meet those quotas, officials pour money into gigantic construction projects, creating the empty "ghost cities" that litter the countryside, or subsidize industrial production far beyond realistic demand. "It's the ultimate Ponzi-scheme economy," she says, citing as examples the Chinese cellphone and solar industries, which ballooned on state funding, flooded global markets with dirt-cheap products, thrived just long enough to kill off most of their overseas competitors, and then largely collapsed. Such ventures, Stevenson-Yang notes, have driven China's debt load perilously high. "They're trying very hard to keep the economy from crashing, but it'll happen eventually," she predicts. "Then there will be a major, major contraction."

"An Intensifying Race Toward Techno-Nationalism"

The greatest vulnerability of the Chinese innovation boom may be that it still depends heavily on imported IP. "Over the last few years, China has placed its bets on a combination of global knowledge sourcing and indigenous technology development," says Dieter Ernst, a senior fellow at the Centre for International Governance Innovation in Waterloo, Canada, and the East-West Center in Honolulu, who has served as an Asia advisor for the U.N. and the World Bank. Aside from international journals (and, occasionally, industrial espionage), Chinese labs and corporations obtain non-indigenous knowledge in a number of ways: by paying licensing fees; recruiting Chinese scientists and engineers who've studied or worked abroad; hiring professionals from other countries; or acquiring foreign companies. And though enforcement of IP laws has improved markedly in recent years, foreign businesses are often pressured to provide technology transfers in exchange for access to markets.

Many of China's top tech entrepreneurs—including Ma, Li, and Alibaba's Joseph Tsai—are alumni of U.S. universities, and, as Kuo puts it, "big fans of all things American." Unfortunately, however, Americans are ever less likely to be fans of China, thanks largely to that country's sometimes predatory trade practices—and also to what Ernst calls "an intensifying race toward techno-nationalism." With varying degrees of bellicosity and consistency, leaders of both U.S. parties embrace elements of the trend, as do politicians (and voters) across much of Europe. "There's a growing consensus that China is poised to overtake us," says Ernst, "and that we need to design policies to obstruct its rise."

One of the foremost liberal analysts supporting this view is Lee Branstetter, a professor of economics and public policy at Carnegie Mellon University and former senior economist on President Barack Obama's Council of Economic Advisors. "Over the decades, in a systematic and premeditated fashion, the Chinese government and its state-owned enterprises have worked to extract valuable technology from foreign multinationals, with an explicit goal of eventually displacing those leading multinationals with successful Chinese firms in global markets," Branstetter wrote in a 2017 report to the United States Trade Representative. To combat such "forced transfers," he suggested, laws could be passed empowering foreign governments to investigate coercive requests and block any deemed inappropriate—not just those involving military-related or crucial infrastructure technology, which current statutes cover. Branstetter also called for "sharply" curtailing Chinese students' access to Western graduate programs, as a way to "get policymakers' attention in Beijing" and induce them to play fair.

Similar sentiments are taking hold in Congress, where the Foreign Investment Risk Review Modernization Act—aimed at strengthening the process by which the Committee on Foreign Investment in the United States reviews Chinese acquisition of American technologies—is expected to pass with bipartisan support, though its harsher provisions were softened due to objections from Silicon Valley. The Trump Administration announced in May that it would soon take executive action to curb Chinese investments in U.S. tech firms and otherwise limit access to intellectual property. The State Department, meanwhile, imposed a one-year limit on visas for Chinese grad students in high-tech fields.

Ernst argues that such measures are motivated largely by exaggerated notions of China's ability to reach its ambitious goals, and by the political advantages that fearmongering confers. "If you look at AI, chip design and fabrication, robotics, pharmaceuticals, the gap with the U.S. is huge," he says. "Reducing it will take at least 10 or 15 years."

Cracking down on U.S. tech transfers to Chinese companies, Ernst cautions, will deprive U.S. firms of vital investment capital and spur China to retaliate, cutting off access to the nation's gargantuan markets; it will also push China to forge IP deals with more compliant nations, or revert to outright piracy. And restricting student visas, besides harming U.S. universities that depend on Chinese scholars' billions in tuition, will have a "chilling effect on America's ability to attract to researchers and engineers from all countries."

"It's not a zero-sum game. I don't think China is going to eat our lunch. We can sit down and enjoy lunch together."

America's own science and technology community, Ernst adds, considers it crucial to swap ideas with China's fast-growing pool of talent. The 2017 annual meeting of the Palo Alto-based Association for Advancement of Artificial Intelligence, he notes, featured a nearly equal number of papers by researchers in China and the U.S. Organizers postponed the meeting after discovering that the original date coincided with the Chinese New Year.

China's rising influence on the tech world carries upsides as well as downsides, Scott Kennedy observes. The country's successes in e-commerce, he says, "haven't damaged the global internet sector, but have actually been a spur to additional innovation and progress. By contrast, China's success in solar and wind has decimated the global sectors," due to state-mandated overcapacity. "When Chinese firms win through open competition, the outcome is constructive; when they win through industrial policy and protectionism, the outcome is destructive."

The solution, Kennedy and like-minded experts argue, is to discourage protectionism rather than engage in it, adjusting tech-transfer policy just enough to cope with evolving national-security concerns. Instead of trying to squelch China's innovation explosion, they say, the U.S. should seek ways to spread its potential benefits (as happened in previous eras with Japan and South Korea), and increase America's indigenous investments in tech-related research, education, and job training.

"It's not a zero-sum game," says Kaiser Kuo. "I don't think China is going to eat our lunch. We can sit down and enjoy lunch together."

Kenneth Miller
Kenneth Miller is a freelance writer based in Los Angeles. He is a contributing editor at Discover, and has reported from four continents for publications including Time, Life, Rolling Stone, Mother Jones, and Aeon. His honors include The ASJA Award for Best Science Writing and the June Roth Memorial Award for Medical Writing. Visit his website at
Get our top stories twice a month
Follow us on

An inviting beach in Nassau, Bahamas.

(© Robert/Fotolia)

Dr. Conville Brown, a cardiologist-researcher in The Bahamas, is at the helm of a fascinating worldwide project: He's leading a movement to help accelerate innovation by providing scientists and patients from around the globe with a legal, cost-effective, and ethically rigorous place to conduct medical research, as well as to offer commercial therapies that are already approved in some jurisdictions, but not others. He recently spoke with Editor-In-Chief Kira Peikoff about The Bahamas' emerging ascendance in the scientific world. This interview has been edited and condensed for brevity.

"You don't want to take shortcuts from the perspective of not giving proper due diligence to the process, but you also don't want it to be overwhelmed with red tape."

Tell me about the work you do in the Bahamas – what is the research focus?

We have a couple research opportunities here. Several years ago, we established the Partners Clinical Research Centre, the idea being that we can partner with different people in different territories in the world, including the United States, and be able to perform ethical research as would be defined and adjudicated by an institutional review board and a properly constituted ethics committee. We do all of this with FDA rigor, but in a non-FDA jurisdiction.

By doing this, we want to look for the science behind the research, and want to know that there is a sound clinical hypothesis that's going to be tested. We also want to know that the safety of the human subjects is assured as much as possible, and of course, assess the efficacy of that which you're testing. We want to do this in the same manner as the FDA, except in a more accelerated and probably less bureaucratic manner. You don't want to take shortcuts from the perspective of not giving proper due diligence to the process, but you also don't want it to be overwhelmed with red tape, so that what could be 3 months takes 3 years. A jet ski turns around a lot faster than the Queen Mary.

Why do you think the clinical research process in other countries like the U.S. has become burdened with red tape?

The litigious nature of society is a contributing factor. If people are negligent, they deserve to be sued. Unfortunately, all too often, some things get taken too far, and sometimes, the pendulum swings too far in the wrong direction and then it's counterproductive, so the whole process then becomes so very heavily regulated and financially burdensome. A lot of American companies have gone outside the country to get their clinical trials and/or device testing done because it's too phenomenally expensive and time-consuming. We seek to make sure the same degree of diligence is exercised but in a lesser time frame, and of course, at a much lower cost.

The other aspect, of course, is that there are certain opportunities where we have major jurisdictions, as in Europe, that have determined that a therapy or device is safe. Those services and devices we can utilize in the Bahamas--not as a clinical research tool, but as a therapy, which of course, the United States is not able to do without FDA approval. That could easily take another five years. So there is an opportunity for us in that window to make available such therapies and devices to the North American community. I like to call this "Advanced Medical Tourism" or "Advanced TransNational Medical Care." Instead of somebody flying nine hours to Europe, they can also now fly to the Bahamas, as little as half an hour away, and as long as we are satisfied that the science is sound and the approvals are in place from a senior jurisdiction, then we can legally serve any patient that is eligible for that particular therapy.

Dr. Conville Brown


Are you seeing an influx of patients for that kind of medical tourism?

The numbers are increasing. The stem cell legislation has now been in place for two to three years, so we have a number of entities including some large international companies coming to the shores of the Bahamas to provide some therapies here, and others for research. The vast majority of our clientele are from abroad, particularly the U.S. We fully plan to increase the traffic flow to the Bahamas for medical tourism, or preferably, TransNational Medical Care, Advanced and Conventional.

How do patients find out about available therapies and trials happening there?

Advertising in the international arena for something that is perfectly legal within the confines of Bahamas is par for the course. But the marketing efforts have not been that heavy while all the processes and procedures are being fine-tuned and the various entities are set up to handle more than 100 people at a time.

"We were able to accelerate those programs, and do it a lot less expensively than can be done in continental countries, but just as well."

What kind of research is being done by companies who have come to the Bahamas?

We've been involved in first-in-man procedures for neuromodulation of the cardiovascular system, where we inserted a device into the blood vessels and stimulated the autonomic nervous system with a view to controlling patients' blood pressure and heart rate in conditions such as congestive heart failure. We have also looked at injectable glucose sensors, to continually monitor the blood glucose, and via a chip, can send the blood glucose measurement back to the patient's cell phone. So the patient looks at his phone for his blood sugar. That was phenomenally exciting, the clinical trial was very positive, and the company is now developing a final prototype to commercialize the product. We were able to accelerate those programs, and do it a lot less expensively than can be done in continental countries, but just as well. The Bahamas has also crafted legislation specifically for regenerative medicine and stem cell research, so that becomes an additional major attraction.

Do you ever find that there is skepticism around going to the Caribbean to do science?

When it comes to clinical research and new medical devices, one might be skeptical about the level of medical/scientific expertise that is resident here. We're here to show that we do in fact have that expertise resident within The Partners Clinical Research Centre, within The Partners Stem Cell Centre, and we have formed our partnerships accordingly so that when prudent and necessary, we bring in additional expertise from the very territories that are seeking to accelerate.

Have you seen a trend toward increasing interest from researchers around the world?

Absolutely. One company, for example, is interested not only in the clinical side, but also the preclinical side--where you can have animal lab experiments done in the Bahamas, and being able to bridge that more readily with the clinical side. That presents a major opportunity for parties involved because again, the financial savings are exponential without compromising standards.

"A person who is 75 and frail, he doesn't want to wait to see if he will make it to 80 to benefit from the agent if it's approved in five years. Instead he can come to our center."

Where are some of these researchers from?

The United States, the Czech Republic, Russia, Canada, and South America. I expect significantly more interest once we promote the idea of European products having a welcome niche in the Bahamas, because we accept federal approvals from the U.S., Canada, and the European Union.

What do you think will be the first medical breakthrough to come out of research there?

One of the biggest killers in the world is heart disease, and we have the opportunity to implement a number of cardiac protocols utilizing stem cell therapy, particularly for those with no options. We just completed a state-of-the art medical center that we fashioned after the University of Miami that is getting ready for prime time. The sky will be the limit for the cardiac patient with respect to stem cell medicine.

Second, we are extremely pleased to be involved with a company called Longeveron, which is looking at how one might age better, and age more slowly, particularly with the administration of young blood and mesenchymal stem cells to frail, elderly candidates. Healthy young men have their mesenchymal stem cells harvested, expanded, and then administered to frail, elderly individuals with a view to improving their Frailty Index and functionality (feeling younger). There is a lot of interest in this arena, as one could imagine.

And herein lies the classical scenario for the Bahamas: Longeveron is now recruiting patients for its phase IIB double blind, placebo-controlled clinical trial at multiple sites across the U.S., which will add some two to three years to its data collection. Originally this work was done with NIH support at the University of Miami's Interdisciplinary Stem Cell Institute by Dr. Joshua Hare, and published in the Journal of Gerontology. So now, during the ongoing and expanded clinical trial, with those positive signals, we are able to have a commercially available clinical registry in the Bahamas. This has been approved by the ethics committee here, which is comprised of international luminaries in regenerative medicine. Longeveron will also be conducting an additional randomized clinical trial arm of same at our Centre in The Bahamas, The Partners Stem Cell Centre.

Can you clarify what you mean by "registry"?

In other words, you still have to fit the eligibility criteria to receive the active agent, but the difference is that in a placebo-controlled double-blind clinical trial, the physician/researcher and the patient don't know if they are getting the active agent or placebo. In the registry, there is no placebo, and you know you're getting the active agent, what we call "open label." You're participating because of the previous information on efficacy and safety.

A person who is 75 and frail, he doesn't want to wait to see if he will make it to 80 to benefit from the agent if it's approved in five years. Instead he can come to our center, one of the designated centers, and as long as he meets the inclusion criteria, may participate in said registry. The additional data from our patients can bolster the numbers in the clinical trial, which can contribute to the FDA approval process. One can see how this could accelerate the process of discovery and acceptance, as well as prove if the agent was not as good as it was made out to be. It goes both ways.

"We would love to be known as a place that facilitates the acceleration of ethical science and ethical therapies, and therefore brings global relief to those in need."

Do you think one day the Bahamas will be more well-known for its science than its beaches?

I doubt that. What I would like to say is that the Bahamas would love to always be known for its beautiful beaches, but we would also like to be known for diversity and innovation. Apart from all that beauty, we can still play a welcoming role to the rest of the scientific world. We would love to be known as a place that facilitates the acceleration of ethical science and ethical therapies, and therefore brings global relief to those in need.

Kira Peikoff
Kira Peikoff is the editor-in-chief of As a journalist, her work has appeared in The New York Times, Newsweek, Nautilus, Popular Mechanics, The New York Academy of Sciences, and other outlets. She is also the author of four suspense novels that explore controversial issues arising from scientific innovation: Living Proof, No Time to Die, Die Again Tomorrow, and Mother Knows Best. Peikoff holds a B.A. in Journalism from New York University and an M.S. in Bioethics from Columbia University. She lives in New Jersey with her husband and son.

The U.S. metaphorically boxing with China over biomedical research.

(© Zerber/Fotolia and © adimas/Fotolia)

Junjiu Huang and his team performed a miracle. A few miracles, actually. The researchers at Sun Yat-sen University in Guangzhou, China used the precise new DNA editing tool called CRISPR-CAS9 to edit a human embryo, replacing a single base. In doing so, they edited out beta-thalassemia, a blood disorder that reduces the production of hemoglobin, which can result in pale skin, fatigue, higher risk of blood clots, and other symptoms.

The race is on, and it's one everyone is going to try to win.

Huang's group, which did not respond to an email requesting comment for this story, injected 86 embryos and observed them for 48 hours. After that period -- a time long enough for CRISPR to split the DNA, other molecules to replace the base, and the embryos to grow to eight cells -- they tested 54 of the 71 that survived. Of those, only a few had the replacement base, according to a report of the study published in Protein & Cell. The experiment stopped there as the embryos, which had been acquired from local fertility clinics, were non-viable and not implanted.

But procreation was not the point. Far from it, in fact. The point was to demonstrate that it could be done, that in some far off (or not so far off) future, doctors could use CRISPR to eliminate diseases like Tay-Sachs, Huntington's, and cystic fibrosis that are caused by genetic mutations. Going a step further, perhaps they could eventually even tailor embryos that will develop into adults with specific traits like height and IQ.

Experts agree that we are far from that point, years if not decades away from leveraging CRISPR to cure diseases and decades if not centuries from being able to build designer babies. In that frame, Huang's achievement is just a small step, a blip on the timeline of human achievement. But seen in another light, it's yet another sign that we need to start talking about DNA modification now, establishing protocols, procedures, and plans that guide the subject before we get so far down the road that momentum is impossible to stop.

"The Chinese generally don't have the religious objections to embryo research that have held back research in the West."

It's essential to do so now because the idea of DNA modification -- a realization that humanity can control its evolution -- is compelling and attractive. Imagine a world where doctors and scientists could get rid of disease before it begins or ensure a baby would arrive with an Einstein-level IQ. That's intriguing, and also terrifying. What are the rules? How do we know when to stop? What guides the process? And how can we prevent mistakes or unwanted mutations? To borrow from another famous quotation, with great power comes great responsibility.

These aren't questions for Huang and the Chinese scientific community alone. A team from Oregon recently edited viable human embryos, eliminating a mutation that can lead to heart failure while preventing any unintended consequences. Just as importantly, every embryo they edited produced the intended genetic changes, a vital step since a partial success rate, known as mosaicism, could have devastating consequences to a future child.

In London at the Francis Crick Institute, researcher Kathy Niakan used CRISPR-CAS9 to "turn off" a gene that produces the protein OCT4. Without the protein, the fertilized egg could not produce a blastocyst, which is a key structure in early mammalian development that gives rise to an embryo and placenta. The recent study wasn't designed to go further, but the use of CRISPR was important. "One way to find out what a gene does in the developing embryo is to see what happens when it isn't working," said Dr. Niakan, who was the first scientist in the world to be granted regulatory approval to edit the genes of a human embryo for research. "Now that we have demonstrated an efficient way of doing this, we hope that other scientists will use it to find out the roles of other genes. If we knew the key genes that embryos need to develop successfully, we could improve IVF treatments and understand some causes of pregnancy failure. It may take many years to achieve such an understanding. Our study is just the first step."

The point is, CRISPR is here and it's not going anywhere. Scientists will continue to use it to learn about how humans develop. Yet different rules regarding CRISPR and embryo research in countries around the world will impact who gets there first. "I've heard the U.S.-China gene editing research parallel paths as Sputnik 2.0," said Kevin Doxzen, Science Communications Specialist at the University of California, Berkeley's Innovative Genomics Institute. The race is on, and it's one everyone is going to try to win.

Based on number of researchers and ease of regulations, the Chinese are the favorites to advance the science the furthest, the fastest.

Based on number of researchers and ease of regulations, the Chinese are the favorites to advance the science the furthest, the fastest. "The Chinese generally don't have the religious (predominantly Christian) or moral objections to embryo research that have held back research in the West," said Dr. Julian Savulescu, the Uehiro Professor of Practical Ethics and Director of the Oxford Martin Programme on Collective Responsibility for Infectious Disease at the University of Oxford. "This kind of research should be done, with the right sort of ethical oversight. The concern over China leading the way is that institutional oversight mechanisms are probably not as developed as in the West but so far, there is no evidence of breaches in standards of research ethics around the published research."

Or, put another way by bioethicist Dr. Arthur Caplan, founding director of NYU Langone Health's Division of Medical Ethics: "The Chinese, because they don't care and don't have moral reservations about embryo work, are doing what they want." This lack of aversion to working with embryos manifests itself in a couple of ways. The absence of moral qualms is one. Funding is another. Huang's study, and others like it, receive funding from the government. His, for example, was supported by two grants from the National Basic Research Program and three from the National Natural Science Foundation of China.

The U.S., on the other hand, bans any federal funding for research using human embryos. A law passed in 1996 states that federal dollars can't be used for: "research in which a human embryo or embryos are destroyed, discarded, or knowingly subjected to risk of injury or death greater than that allowed for research on fetuses." This restriction can shift incentives as many private institutions or commercial enterprises may have financial motivations or other goals beyond furthering basic research for the sake of general knowledge.

Embryo gene modification recently performed in the U.K. would merit 15 years in prison in Australia.

The embryo research ban is even more strict elsewhere. The Oviedo Convention, enacted in 1997, effectively prohibits germline engineering in members of the European Union. "In Italy, you can't destroy an embryo for any reason," said Alessandro Bertero, a postdoctoral fellow at the University of Washington's Department of Pathology who used to study in Italy. "It's illegal, and you'll go to jail." Later, Bertero was one of the researchers who worked with Dr. Niakan in London, an investigation that was allowed by the UK's Human Fertilisation and Embryology Authority. (In Australia, Niakan and her colleagues would face 15 years in jail due to the 2002 Prohibition of Human Cloning Act, which prohibits altering the genomes of embryonic cells.)

Despite the moral and legal reservations in the Western world, every person I spoke with for this story believed that better, more advanced studies and learning is happening in the U.S. and Europe. "The best studies in my opinion are from the labs in California and Oregon," Bertero said. "The quality of the work [in the Chinese study] – not being critical, but to be scientifically critical -- was just quick and dirty. It was, 'Let's just show that we have done it and get it out.' That doesn't mean that the quality of the work was good."

"If the Chinese or someone else starts beating our brains out, we're not going to want to stand by idly and not do these things."

How long that remains the case, however, is an open question. A significant number of groups in China are working on germline editing in human embryos. The concern is that the Chinese will emerge as a leader sooner rather than later because they can do research with embryos more easily than their Western counterparts.

For Caplan, the NYU professor, the embryo ban in the U.S. isn't based on science; it's rooted in something else. "It's 96 percent political," he said, laughing. "It has basically ground to a halt because no one wants to see repercussions take place if federal funding is involved. The NIH isn't involved. And they won't be."

What, in his mind, would get Americans to start realizing the benefits that embryo research would provide? "The perception that other countries were moving quickly to get the advantages of CRISPR and other gene modification techniques, finding more industrial and more medical purposes," he said. "If the Chinese or someone else starts beating our brains out, we're not going to want to stand by idly and not do these things."

Doing so would involve difficult conversations about the role of embryos in research. But these are philosophical questions that need to be approached at some point. From a U.S. perspective, doing so sooner while the American scientists still hold the technological and informational edge, is vital. Ignoring the issue doesn't make it go away.

Experts think a few changes should be made. The ban on federal funding should be lifted. Scientists and regulators should push for things like allowing federal funds to be used for the creation of new embryos for research purposes and the use of spare IVF embryos for research when the embryo would not be implanted into a woman. (Privately funded scientists can proceed in states that encourage embryonic stem cell research, like New York, New Jersey, and California, but not in restrictive ones like Louisiana and South Dakota, which prohibit creating or destroying embryos for research.) Policymakers could ban reproductive gene editing for now but look at it again after a certain period. A highly anticipated report issued earlier this year from an international guidance committee left the door open to eventual clinical trials with edited embryos. As of now, however, Congress will not allow the Food and Drug Administration to consider such trials. This is the future and it's the scientific community's responsibility to develop the ethical framework now.

"The US and Europe have the technological history and capacity to lead this research and should do so, ethically. We ought to be revising our laws and ethical guidelines to facilitate this kind of research," Professor Savulescu said. "But the challenge is to think constructively and ethically about this new technology, and to be leaders, not followers."

Noah Davis
Noah Davis is a writer living in Brooklyn. Visit his website at