Surfing for Science: A Fin Sensor Is Making Waves

Surfer David Walden in La Libertad, El Salvador in February 2018.
For David Walden, a Southern Californian, surfing is a lifestyle, not a hobby. The 38-year-old works nights at a seafood restaurant to leave his mornings free for surfing.
While the surfers are doing what they love, they are also collecting information that is helping scientists better understand the ocean.
"Once you fall in love with the ocean, you need it like a daily cleanse or refresher," he says. "The positive mental and physical effects of the ocean, the endorphins and dopamine, keep you addicted in a good way."
Given his dedication to surfing, Walden was delighted when he became one of more than 200 surfers last year to test Smartfin, a 5-1/2-inch surfboard fin that contains a circuit board, a rechargeable battery, a GPS device, a sensor that captures temperature to one-hundredth of a degree, and a motion sensor that tracks the movement of the waves. While Walden and his fellow surfers are doing what they love, they are also collecting information that is helping scientists better understand the health of the near-shore ocean and how its chemistry is shifting due to climate change.
"I'm excited to be a part of it," Walden says. "I like to tell people I surf for science."
Back on shore, the surfers download the Smartfin data via a smartphone app so they can be accessed by scientists and other interested parties. (You can see where Smartfin surfers go at this interactive map.)
By putting sensors directly onto surfboards, oceanographers can collect data to help them better understand the global-warming related changes occurring in coastal oceans in temperature, salinity, and pH, all properties that have huge implications for the species that live in near-shore ecosystems.
There is much unknown about coastal waters because it's so difficult to obtain meaningful measurements. Traditional methods to monitor the close shore, such as bottle samples and buoys, are time consuming and expensive and tend to get damaged by the surf.
The Smartfin is the brainchild of Dr. Andy Stern, a retired neurologist. He and his brother-in-law, sculptor and filmmaker Todd McGrain, run The Lost Bird Project, a nonprofit devoted to raising awareness about climate change and other environmental issues. Stern brought his super fin idea to engineer Benjamin Thompson, who spent several years creating a prototype in his garage workshop. Smartfin was further developed by scientists at the Scripps Institution of Oceanography at the University of California at San Diego.
"The big challenge was to make a sensor small enough to fit in the fin but still produce good measurements," says Andreas Andersson, an associate professor of geoscience research at Scripps.
The Surfrider Foundation, a surfer-led nonprofit environmental organization, came aboard two years ago to distribute the Smartfin to its San Diego members.
Smartfin has also made a splash with scientists at the University of the Sunshine Coast in Queensland on the eastern coast of Australia. They are using the fin's temperature sensor to better understand how climate change is affecting the movement and distribution of marine life. And at the Plymouth Marine Laboratory in Plymouth, United Kingdom, the Smartfin's precise temperature readings of the near-shore ocean's surface are being used to improve the accuracy of satellites that monitor the ocean from hundreds of miles away.
"It's hard to talk about climate change in a way that's not boring or gloomy, but there's nothing gloomy or depressing about surfers and Smartfin."
"The hope is that Smartfin will improve the satellite measurements, which could improve the retrieval of temperature data around the world," says Dr. Phil Bresnahan, Smartfin's lead engineer at Scripps. In the future, the fin will include sensors to measure pH, chlorophyll (algae), dissolved oxygen, and turbidity (water clarity).
Stern envisions a time when thousands of surfers, paddle boarders, and other water enthusiasts worldwide will have Smartfins and be downloading data for scientists and environmentalists. Right now, there are approximately 70 surfers in the San Diego area using Smartfin and an additional 30 globally.
Scientists have plenty of evidence that global warming is largely caused by humans. Now they are trying to figure out what the long-term effects of climate change may be. For example, scientists are trying to predict which sections of coral reef, which house 25 percent of marine species, are most vulnerable so interventions can be developed to save them. Because of its small size, Smartfin is ideal to measure temperature changes in coral reefs.
Smartfin was also intended to be an educational tool. "It's a great way to start a different conversation about climate change," says Stern. "It's hard to talk about climate change in a way that's not boring or gloomy, but there's nothing gloomy or depressing about surfers and Smartfin. People want to hear more."
Turning surfers into citizen scientists makes perfect sense, says David Pasquini, 35, a longtime surfer who works for the British Consulate General's office in Oceanside, Calif. "Anyone who spends a lot of time in the ocean is aware of the changes happening in the ecosystem, the climate," says Pasquini. "Everyone asks, 'What can I do?'" Surfing with Smartfin, Pasquini feels like he is giving back.
"I know the data will be analyzed and eventually used to make a policy that helps with climate change. That's a great feeling--just by surfing, doing something you love, you're contributing."
Following the Footsteps of a 105-Year-Old Sprinter
No human has run a distance of 100 meters faster than Usain Bolt’s lightning streak in 2009. He set this record at age 22. But what will Bolt’s time be when he’s 105?
At the Louisiana Senior Games in November 2021, 105-year-old Julia Hawkins of Baton Rouge became the oldest woman to run 100 meters in an official competition, qualifying her for this year's National Senior Games. Perhaps not surprisingly, she was the only competitor in the race for people 105 and older. In this Leaps.org video, I interview Hawkins about her lifestyle habits over the decades. Then I ask Steven Austad, a pioneer in studying the mechanisms of aging, for his scientific insights into how those aspiring to become super-agers might follow in Hawkins' remarkable footsteps.
Following the Footsteps of a 105-Year-Old Sprinter
No human has run a distance of 100 meters faster than Usain Bolt’s lightning streak in 2009. He set this record at age 22. But what will Bolt’s time be when ...Matt Fuchs is the editor-in-chief of Leaps.org. He is also a contributing reporter to the Washington Post and has written for the New York Times, Time Magazine, WIRED and the Washington Post Magazine, among other outlets. Follow him on Twitter @fuchswriter.
Monkeypox produces more telltale signs than COVID-19. Scientists think that a “ring” vaccination strategy can be used when these signs appear to help with squelching the current outbreak of this disease.
A new virus has emerged and stoked fears of another pandemic: monkeypox. Since May 2022, it has been detected in 29 U.S. states, the District of Columbia, and Puerto Rico among international travelers and their close contacts. On a worldwide scale, as of June 30, there have been 5,323 cases in 52 countries.
The good news: An existing vaccine can go a long way toward preventing a catastrophic outbreak. Because monkeypox is a close relative of smallpox, the same vaccine can be used—and it is about 85 percent effective against the virus, according to the World Health Organization (WHO).
Also on the plus side, monkeypox is less contagious with milder illness than smallpox and, compared to COVID-19, produces more telltale signs. Scientists think that a “ring” vaccination strategy can be used when these signs appear to help with squelching this alarming outbreak.
How it’s transmitted
Monkeypox spreads between people primarily through direct contact with infectious sores, scabs, or bodily fluids. People also can catch it through respiratory secretions during prolonged, face-to-face contact, according to the Centers for Disease Control and Prevention (CDC).
As of June 30, there have been 396 documented monkeypox cases in the U.S., and the CDC has activated its Emergency Operations Center to mobilize additional personnel and resources. The U.S. Department of Health and Human Services is aiming to boost testing capacity and accessibility. No Americans have died from monkeypox during this outbreak but, during the COVID-19 pandemic (February 2020 to date), Africa has documented 12,141 cases and 363 deaths from monkeypox.
Ring vaccination proved effective in curbing the smallpox and Ebola outbreaks. As the monkeypox threat continues to loom, scientists view this as the best vaccine approach.
A person infected with monkeypox typically has symptoms—for instance, fever and chills—in a contagious state, so knowing when to avoid close contact with others makes it easier to curtail than COVID-19.
Advantages of ring vaccination
For this reason, it’s feasible to vaccinate a “ring” of people around the infected individual rather than inoculating large swaths of the population. Ring vaccination proved effective in curbing the smallpox and Ebola outbreaks. As the monkeypox threat continues to loom, scientists view this as the best vaccine approach.
With many infections, “it normally would make sense to everyone to vaccinate more widely,” says Wesley C. Van Voorhis, a professor and director of the Center for Emerging and Re-emerging Infectious Diseases at the University of Washington School of Medicine in Seattle. However, “in this case, ring vaccination may be sufficient to contain the outbreak and also minimize the rare, but potentially serious side effects of the smallpox/monkeypox vaccine.”
There are two licensed smallpox vaccines in the United States: ACAM2000 (live Vaccina virus) and JYNNEOS (live virus non-replicating). The ACAM 2000, Van Voorhis says, is the old smallpox vaccine that, in rare instances, could spread diffusely within the body and cause heart problems, as well as severe rash in people with eczema or serious infection in immunocompromised patients.
To prevent organ damage, the current recommendation would be to use the JYNNEOS vaccine, says Phyllis Kanki, a professor of health sciences in the division of immunology and infectious diseases at the Harvard T.H. Chan School of Public Health. However, according to a report on the CDC’s website, people with immunocompromising conditions could have a higher risk of getting a severe case of monkeypox, despite being vaccinated, and “might be less likely to mount an effective response after any vaccination, including after JYNNEOS.”
In the late 1960s, the ring vaccination strategy became part of the WHO’s mission to globally eradicate smallpox, with the last known natural case described in Somalia in 1977. Ring vaccination can also refer to how a clinical trial is designed, as was the case in 2015, when this approach was used for researching the benefits of an investigational Ebola vaccine in Guinea, Kanki says.
“Since Monkeypox spreads by close contact and we have an effective vaccine, vaccinating high-risk individuals and their contacts may be a good strategy to limit transmission,” she says, adding that privacy is an important ethical principle that comes into play, as people with monkeypox would need to disclose their close contacts so that they could benefit from ring vaccination.
Rapid identification of cases and contacts—along with their cooperation—is essential for ring vaccination to be effective. Although mass vaccination also may work, the risk of infection to most of the population remains low while supply of the JYNNEOS vaccine is limited, says Stanley Deresinski, a clinical professor of medicine in the Infectious Disease Clinic at Stanford University School of Medicine.
Other strategies for preventing transmission
Ideally, the vaccine should be administered within four days of an exposure, but it’s recommended for up to 14 days. The WHO also advocates more widespread vaccination campaigns in the population segment with the most cases so far: men who engage in sex with other men.
The virus appears to be spreading in sexual networks, which differs from what was seen in previously reported outbreaks of monkeypox (outside of Africa), where risk was associated with travel to central or west Africa or various types of contact with individuals or animals from those locales. There is no evidence of transmission by food, but contaminated articles in the environment such as bedding are potential sources of the virus, Deresinski says.
Severe cases of monkeypox can occur, but “transmission of the virus requires close contact,” he says. “There is no evidence of aerosol transmission, as occurs with SARS-CoV-2, although it must be remembered that the smallpox virus, a close relative of monkeypox, was transmitted by aerosol.”
Deresinski points to the fact that in 2003, monkeypox was introduced into the U.S. through imports from Ghana of infected small mammals, such as Gambian giant rats, as pets. They infected prairie dogs, which also were sold as pets and, ultimately, this resulted in 37 confirmed transmissions to humans and 10 probable cases. A CDC investigation identified no cases of human-to-human transmission. Then, in 2021, a traveler flew from Nigeria to Dallas through Atlanta, developing skin lesions several days after arrival. Another CDC investigation yielded 223 contacts, although 85 percent were deemed to be at only minimal risk and the remainder at intermediate risk. No new cases were identified.
How much should we be worried
But how serious of a threat is monkeypox this time around? “Right now, the risk to the general public is very low,” says Scott Roberts, an assistant professor and associate medical director of infection prevention at Yale School of Medicine. “Monkeypox is spread through direct contact with infected skin lesions or through close contact for a prolonged period of time with an infected person. It is much less transmissible than COVID-19.”
The monkeypox incubation period—the time from infection until the onset of symptoms—is typically seven to 14 days but can range from five to 21 days, compared with only three days for the Omicron variant of COVID-19. With such a long incubation, there is a larger window to conduct contact tracing and vaccinate people before symptoms appear, which can prevent infection or lessen the severity.
But symptoms may present atypically or recognition may be delayed. “Ring vaccination works best with 100 percent adherence, and in the absence of a mandate, this is not achievable,” Roberts says.
At the outset of infection, symptoms include fever, chills, and fatigue. Several days later, a rash becomes noticeable, usually beginning on the face and spreading to other parts of the body, he says. The rash starts as flat lesions that raise and develop fluid, similar to manifestations of chickenpox. Once the rash scabs and falls off, a person is no longer contagious.
“It's an uncomfortable infection,” says Van Voorhis, the University of Washington School of Medicine professor. There may be swollen lymph nodes. Sores and rash are often limited to the genitals and areas around the mouth or rectum, suggesting intimate contact as the source of spread.
Symptoms of monkeypox usually last from two to four weeks. The WHO estimated that fatalities range from 3 to 6 percent. Although it’s believed to infect various animal species, including rodents and monkeys in west and central Africa, “the animal reservoir for the virus is unknown,” says Kanki, the Harvard T.H. Chan School of Public Health professor.
Too often, viruses originate in parts of the world that are too poor to grapple with them and may lack the resources to invest in vaccines and treatments. “This disease is endemic in central and west Africa, and it has basically been ignored until it jumped to the north and infected Europeans, Americans, and Canadians,” Van Voorhis says. “We have to do a better job in health care and prevention all over the world. This is the kind of thing that comes back to bite us.”