Should Your Employer Have Access to Your Fitbit Data?

A woman using a wearable device to track her fitness activities.
The modern world today has become more dependent on technology than ever. We want to achieve maximal tasks with minimal human effort. And increasingly, we want our technology to go wherever we go.
Wearable devices operate by collecting massive amounts of personal information on unsuspecting users.
At work, we are leveraging the immense computing power of tablet computers. To supplement social interaction, we have turned to smartphones and social media. Lately, another novel and exciting technology is on the rise: wearable devices that track our personal data, like the FitBit and the Apple Watch. The interest and demand for these devices is soaring. CCS Insight, an organization that studies developments in digital markets, has reported that the market for wearables will be worth $25 billion by next year. By 2020, it is estimated that a staggering 411 million smart wearable devices will be sold.
Although wearables include smartwatches, fitness bands, and VR/AR headsets, devices that monitor and track health data are gaining most of the traction. Apple has announced the release of Apple Health Records, a new feature for their iOS operating system that will allow users to view and store medical records on their smart devices. Hospitals such as NYU Langone have started to use this feature on Apple Watch to send push notifications to ER doctors for vital lab results, so that they can review and respond immediately. Previously, Google partnered with Novartis to develop smart contact lens that can monitor blood glucose levels in diabetic patients, although the idea has been in limbo.
As these examples illustrate, these wearable devices present unique opportunities to address some of the most intractable problems in modern healthcare. At the same time, these devices operate by collecting massive personal information on unsuspecting users and pose unique ethical challenges regarding informed consent, user privacy, and health data security. If there is a lesson from the recent Facebook debacle, it is that big data applications, even those using anonymized data, are not immune from malicious third-party data-miners.
On consent: do users of wearable devices really know what they are getting into? There is very little evidence to support the claim that consent obtained on signing up can be considered 'informed.' A few months ago, researchers from Australia published an interesting study that surveyed users of wearable devices that monitor and track health data. The survey reported that users were "highly concerned" regarding issues of privacy and considered informed consent "very important" when asked about data sharing with third parties (for advertising or data analysis).
However, users were not aware of how privacy and informed consent were related. In essence, while they seemed to understand the abstract importance of privacy, they were unaware that clicking on the "I agree" dialog box entailed giving up control of their personal health information. This is not surprising, given that most user agreements for online applications or wearable devices are often in lengthy legalese.
Companies could theoretically use their employees' data to motivate desired behavior, throwing a modern wrench into the concept of work/life balance.
Privacy of health data is another unexamined ethical question. Although wearable devices have traditionally been used for promotion of healthy lifestyles (through fitness tracking) and ease of use (such as the call and message features on Apple Watch), increasing interest is coming from corporations. Tractica, a market research firm that studies trends in wearable devices, reports that corporate consumers will account for 17 percent of the market share in wearable devices by 2020 (current market share stands at 1 percent). This is because wearable devices, loaded with several sensors, provide unique insights to track workers' physical activity, stress levels, sleep, and health information. Companies could theoretically use this information to motivate desired behavior, throwing a modern wrench into the concept of work/life balance.
Since paying for employees' healthcare tends to be one of the largest expenses for employers, using wearable devices is seen as something that can boost the bottom line, while enhancing productivity. Even if one considers it reasonable to devise policies that promote productivity, we have yet to determine ethical frameworks that can prevent discrimination against those who may not be able-bodied, and to determine how much control employers ought to exert over the lifestyle of employees.
To be clear, wearable smart devices can address unique challenges in healthcare and elsewhere, but the focus needs to shift toward the user's needs. Data collection practices should also reflect this shift.
Privacy needs to be incorporated bydesign and not as an afterthought. If we were to read privacy policies properly, it could take some 180 to 300 hours per year per person. This needs to change. Privacy and consent policies ought to be in clear, simple language. If using your device means ultimately sharing your data with doctors, food manufacturers, insurers, companies, dating apps, or whoever might want access to it, then you should know that loud and clear.
The recent implementation of European Union's General Data Protection Regulation (GDPR) is also a move in the right direction. These protections include firm guidelines for consent, and an ability to withdraw consent; a right to access data, and to know what is being done with user's collected data; inherent privacy protections; notifications of security breach; and, strict penalties for companies that do not comply. For wearable devices in healthcare, collaborations with frontline providers would also reveal which areas can benefit from integrating wearable technology for maximum clinical benefit.
In our pursuit of advancement, we must not erode fundamental rights to privacy and security, and not infringe on the rights of the vulnerable and marginalized.
If current trends are any indication, wearable devices will play a central role in our future lives. In fact, the next generation of wearables will be implanted under our skin. This future is already visible when looking at the worrying rise in biohacking – or grinding, or cybernetic enhancement – where people attempt to enhance the physical capabilities of their bodies with do-it-yourself cybernetic devices (using hacker ethics to justify the practice).
Already, a company in Wisconsin called Three Square Market has become the first U.S. employer to provide rice-grained-sized radio-frequency identification (RFID) chips implanted under the skin between the thumb and forefinger of their employees. The company stated that these RFID chips (also available as wearable rings or bracelets) can be used to login to computers, open doors, or use the copy machines.
Humans have always used technology to push the boundaries of what we can do. But in our pursuit of advancement, we must not erode fundamental rights to privacy and security, and not infringe on the rights of the vulnerable and marginalized. The rise of powerful wearables will also necessitate a global discussion on moral questions such as: what are the boundaries for artificially enhancing the human body, and is hacking our bodies ethically acceptable? We should think long and hard before we answer.
Meet Dr. Renee Wegrzyn, the first Director of President Biden's new health agency, ARPA-H
Today's podcast guest, Dr. Renee Wegrzyn, directs ARPA-H, a new agency formed last year to spearhead innovations in the realm of health. Time will tell if ARPA-H can produce achievements similar to DARPA, the agency on which it's based.
In today’s podcast episode, I talk with Renee Wegrzyn, appointed by President Biden as the first director of a federal agency created last year called the Advanced Research Projects Agency for Health, or ARPA-H. It’s inspired by DARPA, the agency that develops innovations for the Defense department and has been credited with hatching world changing technologies such as ARPANET, which became the internet.
Time will tell if ARPA-H will lead to similar achievements in the realm of health. That’s what President Biden and Congress expect in return for funding ARPA-H at 2.5 billion dollars over three years.
Listen on Apple | Listen on Spotify | Listen on Stitcher | Listen on Amazon | Listen on Google
How will the agency figure out which projects to take on, especially with so many patient advocates for different diseases demanding moonshot funding for rapid progress.
I talked with Dr. Wegrzyn about the opportunities and challenges, what lessons ARPA-H is borrowing from Operation Warp Speed, how she decided on the first ARPA-H project which was just announced recently, why a separate agency was needed instead of trying to reform HHS and the National Institutes of Health to be better at innovation, and how ARPA-H will make progress on disease prevention in addition to treatments for cancer, Alzheimer’s and diabetes, among many other health priorities.
Dr. Wegrzyn’s resume is filled with experience for her important role. She was a program manager at DARPA where she focused on applying gene editing and synthetic biology to the goal of improving biosecurity. For her work there, she was given the Superior Public Service Medal and, just in case that wasn’t enough ARPA experience, she also worked at another ARPA that leads advanced projects in intelligence, called I-ARPA. Before that, she was in charge of technical teams in the private sector working on gene therapies and disease diagnostics, among other areas. She has been a vice president of business development at Gingko Bioworks and headed innovation at Concentric by Gingko. Her training and education includes a PhD and undergraduate degree in applied biology from the Georgia Institute of Technology and she did her postdoc as an Alexander von Humboldt Fellow in Heidelberg, Germany.
As Dr. Wegrzyn told me, she’s “in the hot seat” - the pressure is on for ARPA-H especially after the need and potential for health innovation was spot lit by the pandemic and the unprecedented speed of vaccine development. We'll soon find out if ARPA-H can produce something in health that’s equivalent to DARPA’s creation of the internet.
Show links:
ARPA-H - https://arpa-h.gov/
Dr. Wegrzyn profile - https://arpa-h.gov/people/renee-wegrzyn/
Dr. Wegrzyn Twitter - https://twitter.com/rwegrzyn?lang=en
President Biden Announces Dr. Wegrzyn's appointment - https://www.whitehouse.gov/briefing-room/statement...
Leaps.org coverage of ARPA-H - https://leaps.org/arpa/
ARPA-H program for joints to heal themselves - https://arpa-h.gov/news/nitro/ -
ARPA-H virtual talent search - https://arpa-h.gov/news/aco-talent-search/
Matt Fuchs is the editor-in-chief of Leaps.org and Making Sense of Science. He is also a contributing reporter to the Washington Post and has written for the New York Times, Time Magazine, WIRED and the Washington Post Magazine, among other outlets. Follow him @fuchswriter.
Tiny, tough “water bears” may help bring new vaccines and medicines to sub-Saharan Africa
Tardigrades can completely dehydrate and later rehydrate themselves, a survival trick that scientists are harnessing to preserve medicines in hot temperatures.
Microscopic tardigrades, widely considered to be some of the toughest animals on earth, can survive for decades without oxygen or water and are thought to have lived through a crash-landing on the moon. Also known as water bears, they survive by fully dehydrating and later rehydrating themselves – a feat only a few animals can accomplish. Now scientists are harnessing tardigrades’ talents to make medicines that can be dried and stored at ambient temperatures and later rehydrated for use—instead of being kept refrigerated or frozen.
Many biologics—pharmaceutical products made by using living cells or synthesized from biological sources—require refrigeration, which isn’t always available in many remote locales or places with unreliable electricity. These products include mRNA and other vaccines, monoclonal antibodies and immuno-therapies for cancer, rheumatoid arthritis and other conditions. Cooling is also needed for medicines for blood clotting disorders like hemophilia and for trauma patients.
Formulating biologics to withstand drying and hot temperatures has been the holy grail for pharmaceutical researchers for decades. It’s a hard feat to manage. “Biologic pharmaceuticals are highly efficacious, but many are inherently unstable,” says Thomas Boothby, assistant professor of molecular biology at University of Wyoming. Therefore, during storage and shipping, they must be refrigerated at 2 to 8 degrees Celsius (35 to 46 degrees Fahrenheit). Some must be frozen, typically at -20 degrees Celsius, but sometimes as low -90 degrees Celsius as was the case with the Pfizer Covid vaccine.
For Covid, fewer than 73 percent of the global population received even one dose. The need for refrigerated or frozen handling was partially to blame.
The costly cold chain
The logistics network that ensures those temperature requirements are met from production to administration is called the cold chain. This cold chain network is often unreliable or entirely lacking in remote, rural areas in developing nations that have malfunctioning electrical grids. “Almost all routine vaccines require a cold chain,” says Christopher Fox, senior vice president of formulations at the Access to Advanced Health Institute. But when the power goes out, so does refrigeration, putting refrigerated or frozen medical products at risk. Consequently, the mRNA vaccines developed for Covid-19 and other conditions, as well as more traditional vaccines for cholera, tetanus and other diseases, often can’t be delivered to the most remote parts of the world.
To understand the scope of the challenge, consider this: In the U.S., more than 984 million doses of Covid-19 vaccine have been distributed so far. Each one needed refrigeration that, even in the U.S., proved challenging. Now extrapolate to all vaccines and the entire world. For Covid, fewer than 73 percent of the global population received even one dose. The need for refrigerated or frozen handling was partially to blame.
Globally, the cold chain packaging market is valued at over $15 billion and is expected to exceed $60 billion by 2033.
Adobe Stock
Freeze-drying, also called lyophilization, which is common for many vaccines, isn’t always an option. Many freeze-dried vaccines still need refrigeration, and even medicines approved for storage at ambient temperatures break down in the heat of sub-Saharan Africa. “Even in a freeze-dried state, biologics often will undergo partial rehydration and dehydration, which can be extremely damaging,” Boothby explains.
The cold chain is also very expensive to maintain. The global pharmaceutical cold chain packaging market is valued at more than $15 billion, and is expected to exceed $60 billion by 2033, according to a report by Future Market Insights. This cost is only expected to grow. According to the consulting company Accenture, the number of medicines that require the cold chain are expected to grow by 48 percent, compared to only 21 percent for non-cold-chain therapies.
Tardigrades to the rescue
Tardigrades are only about a millimeter long – with four legs and claws, and they lumber around like bears, thus their nickname – but could provide a big solution. “Tardigrades are unique in the animal kingdom, in that they’re able to survive a vast array of environmental insults,” says Boothby, the Wyoming professor. “They can be dried out, frozen, heated past the boiling point of water and irradiated at levels that are thousands of times more than you or I could survive.” So, his team is gradually unlocking tardigrades’ survival secrets and applying them to biologic pharmaceuticals to make them withstand both extreme heat and desiccation without losing efficacy.
Boothby’s team is focusing on blood clotting factor VIII, which, as the name implies, causes blood to clot. Currently, Boothby is concentrating on the so-called cytoplasmic abundant heat soluble (CAHS) protein family, which is found only in tardigrades, protecting them when they dry out. “We showed we can desiccate a biologic (blood clotting factor VIII, a key clotting component) in the presence of tardigrade proteins,” he says—without losing any of its effectiveness.
The researchers mixed the tardigrade protein with the blood clotting factor and then dried and rehydrated that substance six times without damaging the latter. This suggests that biologics protected with tardigrade proteins can withstand real-world fluctuations in humidity.
Furthermore, Boothby’s team found that when the blood clotting factor was dried and stabilized with tardigrade proteins, it retained its efficacy at temperatures as high as 95 degrees Celsius. That’s over 200 degrees Fahrenheit, much hotter than the 58 degrees Celsius that the World Meteorological Organization lists as the hottest recorded air temperature on earth. In contrast, without the protein, the blood clotting factor degraded significantly. The team published their findings in the journal Nature in March.
Although tardigrades rarely live more than 2.5 years, they have survived in a desiccated state for up to two decades, according to Animal Diversity Web. This suggests that tardigrades’ CAHS protein can protect biologic pharmaceuticals nearly indefinitely without refrigeration or freezing, which makes it significantly easier to deliver them in locations where refrigeration is unreliable or doesn’t exist.
The tricks of the tardigrades
Besides the CAHS proteins, tardigrades rely on a type of sugar called trehalose and some other protectants. So, rather than drying up, their cells solidify into rigid, glass-like structures. As that happens, viscosity between cells increases, thereby slowing their biological functions so much that they all but stop.
Now Boothby is combining CAHS D, one of the proteins in the CAHS family, with trehalose. He found that CAHS D and trehalose each protected proteins through repeated drying and rehydrating cycles. They also work synergistically, which means that together they might stabilize biologics under a variety of dry storage conditions.
“We’re finding the protective effect is not just additive but actually is synergistic,” he says. “We’re keen to see if something like that also holds true with different protein combinations.” If so, combinations could possibly protect against a variety of conditions.
Commercialization outlook
Before any stabilization technology for biologics can be commercialized, it first must be approved by the appropriate regulators. In the U.S., that’s the U.S. Food and Drug Administration. Developing a new formulation would require clinical testing and vast numbers of participants. So existing vaccines and biologics likely won’t be re-formulated for dry storage. “Many were developed decades ago,” says Fox. “They‘re not going to be reformulated into thermo-stable vaccines overnight,” if ever, he predicts.
Extending stability outside the cold chain, even for a few days, can have profound health, environmental and economic benefits.
Instead, this technology is most likely to be used for the new products and formulations that are just being created. New and improved vaccines will be the first to benefit. Good candidates include the plethora of mRNA vaccines, as well as biologic pharmaceuticals for neglected diseases that affect parts of the world where reliable cold chain is difficult to maintain, Boothby says. Some examples include new, more effective vaccines for malaria and for pathogenic Escherichia coli, which causes diarrhea.
Tallying up the benefits
Extending stability outside the cold chain, even for a few days, can have profound health, environmental and economic benefits. For instance, MenAfriVac, a meningitis vaccine (without tardigrade proteins) developed for sub-Saharan Africa, can be stored at up to 40 degrees Celsius for four days before administration. “If you have a few days where you don’t need to maintain the cold chain, it’s easier to transport vaccines to remote areas,” Fox says, where refrigeration does not exist or is not reliable.
Better health is an obvious benefit. MenAfriVac reduced suspected meningitis cases by 57 percent in the overall population and more than 99 percent among vaccinated individuals.
Lower healthcare costs are another benefit. One study done in Togo found that the cold chain-related costs increased the per dose vaccine price up to 11-fold. The ability to ship the vaccines using the usual cold chain, but transporting them at ambient temperatures for the final few days cut the cost in half.
There are environmental benefits, too, such as reducing fuel consumption and greenhouse gas emissions. Cold chain transports consume 20 percent more fuel than non-cold chain shipping, due to refrigeration equipment, according to the International Trade Administration.
A study by researchers at Johns Hopkins University compared the greenhouse gas emissions of the new, oral Vaxart COVID-19 vaccine (which doesn’t require refrigeration) with four intramuscular vaccines (which require refrigeration or freezing). While the Vaxart vaccine is still in clinical trials, the study found that “up to 82.25 million kilograms of CO2 could be averted by using oral vaccines in the U.S. alone.” That is akin to taking 17,700 vehicles out of service for one year.
Although tardigrades’ protective proteins won’t be a component of biologic pharmaceutics for several years, scientists are proving that this approach is viable. They are hopeful that a day will come when vaccines and biologics can be delivered anywhere in the world without needing refrigerators or freezers en route.