Neuromarketers Are Studying Brain Scans to Influence Our Product Choices

A doctor looking at MRI scan results.
When was the last time you made a pro-con list? Carefully considered all factors and weighed them against each other before you made a choice?
Chances are that most of your decisions do not follow this rigorous process. They are made quickly, subconsciously, and often do not adhere to any strict logic. Rather, your decisions are influenced by your mood, your relatives and friends, and a range of other factors that scientists are still unraveling.
When the shoppers were asked why they chose that bottle of wine, almost none of them noticed the music or believed it influenced their decision.
Influencing your choices is also the holy grail of marketing. Companies spend vast amounts of time and money creating product designs and ads. These ads are often tested in focus groups or individual interviews to ensure that they will do well in the market.
Traditional methods of market research rely on self-reports. The participants are asked which ad they find more appealing and why. But there are a few problems with this approach.
For one, the participants might not fully understand their true preferences. They might think that the green design looks more appealing when they compare choices, but then pick up the orange one when they mindlessly wander through the supermarket. It's well known that we humans often do not act rationally, so why would we accurately predict our own behavior?
Another issue is that we like to think of ourselves as logical. Even though our choices are at least partially made subconsciously, we have a tendency to rationalize them after the fact. For example, when supermarkets play French music, the shoppers are 3-4 times more likely to buy French wine. Play German music and German wine sales go up. But when the shoppers are asked why they chose that bottle of wine, almost none of them notice the music or believe it influenced their decision. Instead, they say that they preferred the label or price.
Finally, participants might truly know their preference but choose not to disclose it. Imagine sitting in a focus group watching a TV spot that makes fun of somebody's misfortune. You might be too embarrassed to admit that this is the funnier and more appealing spot, because you're afraid of being judged.
Results from traditional market research are therefore unavoidably subjective and biased.
In the hope of overcoming these limitations, newer ways of market research have been developed, among them neuromarketing, which applies neuroscience to marketing.
Today, neuromarketers focus their efforts on three main stages: to aid product ideation, evaluate the finished product or prototypes, and develop the best marketing strategy. In all cases, they want to find the option with the most "favorable" brain response – but exactly how this brain response is defined varies vastly between studies.
Perhaps the most promising of all non-traditional techniques is functional magnetic resonance imaging (fMRI). This neuroimaging technique measures brain activity indirectly by tracking changes in blood flow. In short, active brain areas receive more oxygen-rich blood. The fMRI scanner picks up the difference between oxygen-rich and oxygen-poor blood and can therefore measure which brain areas are more active than others. But is there truly an untapped potential in the human brain that can be unlocked using neuroimaging?
A number of studies claim that functional neuroimaging has been successfully applied to marketing scenarios. For example, when researchers tried to predict the success of 6 different ads for chocolate bars, the brain response of 18 women was reportedly more predictive than their self-reported preference. The ad that was rated best in interviews was actually the least successful in a real supermarket. In contrast, the neuroimaging algorithm correctly predicted the top two selling ads.
One of the biggest fears is that the potential insights from neuromarketing studies could be used in new, disturbing ways for consumer manipulation.
This study has a number of limitations, which are representative of the majority of neuromarketing research. The field is full of experiments that are conducted with small samples or using suboptimal protocols, with a lack of appropriate control conditions. While a small number of academic researchers are using rigorous protocols, most studies are conducted by neuromarketing companies or funded by the corporations whose products were tested. Such set-ups raise the risk of biased reporting, calling into question the reliability of the findings. Publication bias – the tendency to publish only positive results which leads to a skewing of reported results in the literature – is especially common for industry-funded studies.
One of the biggest fears is that the potential insights from neuromarketing studies could be used in new, disturbing ways for consumer manipulation. If a new product or ad campaign is designed to target our subconscious decision-making better than ever before, are we less able to resist the purchase? We might believe that we all have a healthy amount of self-control, but when we're in the supermarket after a stressful day or we're struggling to manage the self-control of someone else, like a small child, is it ethical for corporations to tap our unconscious decision-making?
As with any technology, the deciding factor is how it will be used. While there are many dangerous applications that might make unhealthy products one day impossible to resist, there are also some more optimistic scenarios. For example, brain scans have been used to predict the success of an antismoking campaign. If such public health interventions that are notoriously ineffective could encourage more people to make healthier lifestyle choices, don't we all benefit? Or is this still a step too far toward manipulation and propaganda?
The conduct of the studies themselves is another problematic area. Academic researchers must go through a rigorous process before they can start a study, which involves review by an ethics board. In contrast, there are barely any regulations for corporate studies. This is not only relevant for the experience of the participants, but also for how the data are being used. Take an extreme case – the brain scan reveals that the participant has a tumor. Universities have protocols in place for how to deal with these situations – often, the scans would be reviewed by a neuro-radiologist and the participant would be informed. Commercial organizations are under no such obligation.
Neuromarketing carries great potential to nudge positive behavioral change, though it also carries the risk of abuse.
Neuromarketing is now a highly competitive field with many different vendors. The Advertising Research Foundation compared 8 vendors that used neuroscientific methods or biometrics for the research of ad campaigns and found that there were differences in methodology and approach; most were proprietary and vendors were not willing to disclose what they measured and how. This lack of transparency is slowing down progress, as researchers cannot contrast and compare different approaches to optimize them.
Despite these methodological challenges, neuromarketing carries great potential to nudge positive behavioral change, though it also carries the risk of abuse. Where one ends and the other starts will need to be clearly defined. It's time to start a public debate now to inform future laws and regulations for the neuromarketing industry, as these technologies will eventually affect us all.
After spaceflight record, NASA looks to protect astronauts on even longer trips
NASA astronaut Frank Rubio floats by the International Space Station’s “window to the world.” Yesterday, he returned from the longest single spaceflight by a U.S. astronaut on record - over one year. Exploring deep space will require even longer missions.
Inside the Atlantis Space Shuttle, astronauts waited for liftoff. At T-minus six seconds, the main engines ignited, rattling the capsule “like a skyscraper in an earthquake,” according to astronaut Tom Jones, describing the 1988 launch in Air & Space Magazine. Liftoff came with what felt like “a massive kick in the back,” he recalled, along with more shaking. As the rocket accelerated to three times the force of gravity on Earth, “It felt as if two of my friends were standing on my chest and wouldn’t get off!” Finally, at 25 times the speed of sound, Atlantis reached orbit. The main engines cut off, and the astronauts were weightless.
Since 1961, NASA has sent hundreds of astronauts into space while working to making their voyages safer and smoother. Yet, challenges remain. Weightlessness may look amusing when watched from Earth, but it has myriad effects on cognition, movement and other functions. When missions to space stretch to six months or longer, microgravity can harm astronauts’ health and performance, making it more difficult to operate their spacecraft.
Yesterday, NASA astronaut Frank Rubio returned to Earth after over one year, the longest single spaceflight for a U.S. astronaut. But this is just the start; longer and more complex missions into deep space loom ahead, from returning to the moon in 2025 to eventually sending humans to Mars. Understanding how spaceflight affects the body is vital to success. By studying these impacts, NASA aims to help astronauts perform in space as well as they do on Earth.
The dangers of microgravity are real
A NASA report published in 2016 details a long list of incidents and near-misses caused – at least partly – by space-induced changes in astronauts’ vision and coordination. These issues make it harder to move with precision and to judge distance and velocity.
According to the report, in 1997, a resupply ship collided with the Mir space station, possibly because a crew member bumped into the commander during the final docking maneuver. This mishap caused significant damage to the space station.
Returns to Earth suffered from problems, too. The same report notes that touchdown speeds during the first 100 space shuttle landings were “outside acceptable limits. The fastest landing on record – 224 knots (258 miles) per hour – was linked to the commander’s momentary spatial disorientation.” Earlier, each of the six Apollo crews that landed on the moon had difficulty recognizing moon landmarks and estimating distances. For example, Apollo 15 landed in an unplanned area, ultimately straddling the rim of a five-foot deep crater on the moon, harming one of its engines.
Spaceflight causes unique stresses on astronauts’ brains and central nervous systems. NASA is working to reduce these harmful effects.
NASA
Space messes up your brain
In space, astronauts face the challenges of microgravity, ionizing radiation, social isolation, high workloads, altered circadian rhythms, monotony, confined living quarters and a high-risk environment. Among these issues, microgravity is one of the most consequential in terms of physiological changes. It changes the brain’s structure and its functioning, which can hurt astronauts’ performance.
The brain shifts upwards within the skull, displacing the cerebrospinal fluid, which reduces the brain’s cushioning. Essentially, the brain becomes crowded inside the skull like a pair of too-tight shoes.
That’s partly because of how being in space alters blood flow. On Earth, gravity pulls our blood and other internal fluids toward our feet, but our circulatory valves ensure that the fluids are evenly distributed throughout the body. In space, there’s not enough gravity to pull the fluids down, and they shift up, says Rachael D. Seidler, a physiologist specializing in spaceflight at the University of Florida and principal investigator on many space-related studies. The head swells and legs appear thinner, causing what astronauts call “puffy face chicken legs.”
“The brain changes at the structural and functional level,” says Steven Jillings, equilibrium and aerospace researcher at the University of Antwerp in Belgium. “The brain shifts upwards within the skull,” displacing the cerebrospinal fluid, which reduces the brain’s cushioning. Essentially, the brain becomes crowded inside the skull like a pair of too-tight shoes. Some of the displaced cerebrospinal fluid goes into cavities within the brain, called ventricles, enlarging them. “The remaining fluids pool near the chest and heart,” explains Jillings. After 12 consecutive months in space, one astronaut had a ventricle that was 25 percent larger than before the mission.
Some changes reverse themselves while others persist for a while. An example of a longer-lasting problem is spaceflight-induced neuro-ocular syndrome, which results in near-sightedness and pressure inside the skull. A study of approximately 300 astronauts shows near-sightedness affects about 60 percent of astronauts after long missions on the International Space Station (ISS) and more than 25 percent after spaceflights of only a few weeks.
Another long-term change could be the decreased ability of cerebrospinal fluid to clear waste products from the brain, Seidler says. That’s because compressing the brain also compresses its waste-removing glymphatic pathways, resulting in inflammation, vulnerability to injuries and worsening its overall health.
The effects of long space missions were best demonstrated on astronaut twins Scott and Mark Kelly. This NASA Twins Study showed multiple, perhaps permanent, changes in Scott after his 340-day mission aboard the ISS, compared to Mark, who remained on Earth. The differences included declines in Scott’s speed, accuracy and cognitive abilities that persisted longer than six months after returning to Earth in March 2016.
By the end of 2020, Scott’s cognitive abilities improved, but structural and physiological changes to his eyes still remained, he said in a BBC interview.
“It seems clear that the upward shift of the brain and compression of the surrounding tissues with ventricular expansion might not be a good thing,” Seidler says. “But, at this point, the long-term consequences to brain health and human performance are not really known.”
NASA astronaut Kate Rubins conducts a session for the Neuromapping investigation.
NASA
Staying sharp in space
To investigate how prolonged space travel affects the brain, NASA launched a new initiative called the Complement of Integrated Protocols for Human Exploration Research (CIPHER). “CIPHER investigates how long-duration spaceflight affects both brain structure and function,” says neurobehavioral scientist Mathias Basner at the University of Pennsylvania, a principal investigator for several NASA studies. “Through it, we can find out how the brain adapts to the spaceflight environment and how certain brain regions (behave) differently after – relative to before – the mission.”
To do this, he says, “Astronauts will perform NASA’s cognition test battery before, during and after six- to 12-month missions, and will also perform the same test battery in an MRI scanner before and after the mission. We have to make sure we better understand the functional consequences of spaceflight on the human brain before we can send humans safely to the moon and, especially, to Mars.”
As we go deeper into space, astronauts cognitive and physical functions will be even more important. “A trip to Mars will take about one year…and will introduce long communication delays,” Seidler says. “If you are on that mission and have a problem, it may take eight to 10 minutes for your message to reach mission control, and another eight to 10 minutes for the response to get back to you.” In an emergency situation, that may be too late for the response to matter.
“On a mission to Mars, astronauts will be exposed to stressors for unprecedented amounts of time,” Basner says. To counter them, NASA is considering the continuous use of artificial gravity during the journey, and Seidler is studying whether artificial gravity can reduce the harmful effects of microgravity. Some scientists are looking at precision brain stimulation as a way to improve memory and reduce anxiety due to prolonged exposure to radiation in space.
Other scientists are exploring how to protect neural stem cells (which create brain cells) from radiation damage, developing drugs to repair damaged brain cells and protect cells from radiation.
To boldly go where no astronauts have gone before, they must have optimal reflexes, vision and decision-making. In the era of deep space exploration, the brain—without a doubt—is the final frontier.
Additionally, NASA is scrutinizing each aspect of the mission, including astronaut exercise, nutrition and intellectual engagement. “We need to give astronauts meaningful work. We need to stimulate their sensory, cognitive and other systems appropriately,” Basner says, especially given their extreme confinement and isolation. The scientific experiments performed on the ISS – like studying how microgravity affects the ability of tissue to regenerate is a good example.
“We need to keep them engaged socially, too,” he continues. The ISS crew, for example, regularly broadcasts from space and answers prerecorded questions from students on Earth, and can engage with social media in real time. And, despite tight quarters, NASA is ensuring the crew capsule and living quarters on the moon or Mars include private space, which is critical for good mental health.
Exploring deep space builds on a foundation that began when astronauts first left the planet. With each mission, scientists learn more about spaceflight effects on astronauts’ bodies. NASA will be using these lessons to succeed with its plans to build science stations on the moon and, eventually, Mars.
“Through internally and externally led research, investigations implemented in space and in spaceflight simulations on Earth, we are striving to reduce the likelihood and potential impacts of neurostructural changes in future, extended spaceflight,” summarizes NASA scientist Alexandra Whitmire. To boldly go where no astronauts have gone before, they must have optimal reflexes, vision and decision-making. In the era of deep space exploration, the brain—without a doubt—is the final frontier.
A newly discovered brain cell may lead to better treatments for cognitive disorders
Swiss researchers have found a type of brain cell that appears to be a hybrid of the two other main types — and it could lead to new treatments for brain disorders.
Swiss researchers have discovered a third type of brain cell that appears to be a hybrid of the two other primary types — and it could lead to new treatments for many brain disorders.
The challenge: Most of the cells in the brain are either neurons or glial cells. While neurons use electrical and chemical signals to send messages to one another across small gaps called synapses, glial cells exist to support and protect neurons.
Astrocytes are a type of glial cell found near synapses. This close proximity to the place where brain signals are sent and received has led researchers to suspect that astrocytes might play an active role in the transmission of information inside the brain — a.k.a. “neurotransmission” — but no one has been able to prove the theory.
A new brain cell: Researchers at the Wyss Center for Bio and Neuroengineering and the University of Lausanne believe they’ve definitively proven that some astrocytes do actively participate in neurotransmission, making them a sort of hybrid of neurons and glial cells.
According to the researchers, this third type of brain cell, which they call a “glutamatergic astrocyte,” could offer a way to treat Alzheimer’s, Parkinson’s, and other disorders of the nervous system.
“Its discovery opens up immense research prospects,” said study co-director Andrea Volterra.
The study: Neurotransmission starts with a neuron releasing a chemical called a neurotransmitter, so the first thing the researchers did in their study was look at whether astrocytes can release the main neurotransmitter used by neurons: glutamate.
By analyzing astrocytes taken from the brains of mice, they discovered that certain astrocytes in the brain’s hippocampus did include the “molecular machinery” needed to excrete glutamate. They found evidence of the same machinery when they looked at datasets of human glial cells.
Finally, to demonstrate that these hybrid cells are actually playing a role in brain signaling, the researchers suppressed their ability to secrete glutamate in the brains of mice. This caused the rodents to experience memory problems.
“Our next studies will explore the potential protective role of this type of cell against memory impairment in Alzheimer’s disease, as well as its role in other regions and pathologies than those explored here,” said Andrea Volterra, University of Lausanne.
But why? The researchers aren’t sure why the brain needs glutamatergic astrocytes when it already has neurons, but Volterra suspects the hybrid brain cells may help with the distribution of signals — a single astrocyte can be in contact with thousands of synapses.
“Often, we have neuronal information that needs to spread to larger ensembles, and neurons are not very good for the coordination of this,” researcher Ludovic Telley told New Scientist.
Looking ahead: More research is needed to see how the new brain cell functions in people, but the discovery that it plays a role in memory in mice suggests it might be a worthwhile target for Alzheimer’s disease treatments.
The researchers also found evidence during their study that the cell might play a role in brain circuits linked to seizures and voluntary movements, meaning it’s also a new lead in the hunt for better epilepsy and Parkinson’s treatments.
“Our next studies will explore the potential protective role of this type of cell against memory impairment in Alzheimer’s disease, as well as its role in other regions and pathologies than those explored here,” said Volterra.