Mind the (Vote) Gap: Can We Get More STEM Students to the Polls?

An "I Voted" sticker.

By Phillip Goldsberry on Unsplash

This article is part of the magazine, "The Future of Science In America: The Election Issue," co-published by LeapsMag, the Aspen Institute Science & Society Program, and GOOD.

By the numbers, American college students who major in STEM disciplines—science, technology, engineering, and math—aren't big on voting. In fact, recent research suggests they're the least likely group of students to head to the ballot box, even as American political leaders cast doubt on the very kinds of expertise those students are developing on campus.

Worried educators say it's time for a rethink of STEM education at the college level. Armed with success stories and model courses, educators are pushing for colleagues to add relevance to STEM education—and instill a sense of civic duty—by bringing the outside world in.

"It's a matter of what's in the curriculum, how faculty spend their time. There are opportunities to weave [policy] within the curriculum," said Nancy L. Thomas, director of Tufts University's Institute for Democracy & Higher Education.


The most recent student voting numbers come from the 2018 mid-term election, when a national Democratic wave brought voters to the polls. Just over a third of STEM college students surveyed said they voted, the lowest percentage of six subject areas, according to a report from the institute at Tufts. Students in the education, social sciences, and humanities fields had the highest voting rates at 47%, 41%, and 39%, respectively.
Keep Reading Keep Reading
Randy Dotinga
Randy Dotinga is former president of the American Society of Journalists and Authors, a non-profit association of freelance writers and non-fiction authors. He has been a freelance writer since 1999 and specializes in health/medicine, politics, books, and the odd and unusual. You can follow him at @rdotinga.
Get our top stories twice a month
Follow us on

Naked mole rats have extraordinarily long lifespans and are extremely resistant to cancer.

Photo credit: Meghan Murphy, Smithsonian's National Zoo

Rochelle "Shelley" Buffenstein has one of the world's largest, if not the largest, lab-dwelling colonies of the naked mole rat. (No one has done a worldwide tabulation, but she has 4,500 of them.) Buffenstein has spent decades studying the little subterranean-dwelling rodents. Over the years, she and her colleagues have uncovered one surprising discovery after another, which has led them to re-orient the whole field of anti-aging research.

Naked mole rats defy everything we thought we knew about aging. These strange little rodents from arid regions of Africa, such as Kenya, Ethiopia and Somalia, live up to ten times longer than their size would suggest. And unlike virtually every other animal, they don't lose physical or cognitive abilities with age, and even retain their fertility up until the end of life. They appear to have active defenses against the ravages of time, suggesting that aging may not be inevitable. Could these unusual creatures teach humans how to extend life and ameliorate aging?

Keep Reading Keep Reading
Eve Herold
Eve Herold is a science writer specializing in issues at the intersection of science and society. She has written and spoken extensively about stem cell research and regenerative medicine and the social and bioethical aspects of leading-edge medicine. Her 2007 book, Stem Cell Wars, was awarded a Commendation in Popular Medicine by the British Medical Association. Her 2016 book, Beyond Human, has been nominated for the Kirkus Prize in Nonfiction, and a forthcoming book, Robots and the Women Who Love Them, will be released in 2019.
Photo by the National Cancer Institute on Unsplash

In November 2020, messenger RNA catapulted into the public consciousness when the first COVID-19 vaccines were authorized for emergency use. Around the same time, an equally groundbreaking yet relatively unheralded application of mRNA technology was taking place at a London hospital.

Over the past two decades, there's been increasing interest in harnessing mRNA — molecules present in all of our cells that act like digital tape recorders, copying instructions from DNA in the cell nucleus and carrying them to the protein-making structures — to create a whole new class of therapeutics.

Keep Reading Keep Reading
David Cox
David Cox is a science and health writer based in the UK. He has a PhD in neuroscience from the University of Cambridge and has written for newspapers and broadcasters worldwide including BBC News, New York Times, and The Guardian. You can follow him on Twitter @DrDavidACox.