Mind the (Vote) Gap: Can We Get More STEM Students to the Polls?

An "I Voted" sticker.
This article is part of the magazine, "The Future of Science In America: The Election Issue," co-published by LeapsMag, the Aspen Institute Science & Society Program, and GOOD.
By the numbers, American college students who major in STEM disciplines—science, technology, engineering, and math—aren't big on voting. In fact, recent research suggests they're the least likely group of students to head to the ballot box, even as American political leaders cast doubt on the very kinds of expertise those students are developing on campus.
Worried educators say it's time for a rethink of STEM education at the college level. Armed with success stories and model courses, educators are pushing for colleagues to add relevance to STEM education—and instill a sense of civic duty—by bringing the outside world in.
"It's a matter of what's in the curriculum, how faculty spend their time. There are opportunities to weave [policy] within the curriculum," said Nancy L. Thomas, director of Tufts University's Institute for Democracy & Higher Education.
The most recent student voting numbers come from the 2018 mid-term election, when a national Democratic wave brought voters to the polls. Just over a third of STEM college students surveyed said they voted, the lowest percentage of six subject areas, according to a report from the institute at Tufts. Students in the education, social sciences, and humanities fields had the highest voting rates at 47%, 41%, and 39%, respectively.
Students across the board were much less engaged in the mid-year election of 2014, when just 28% of education students surveyed said they voted. STEM students again stood at the rear, with just 16% voting.
(The report analyzed whether more than 10 million college students at 1,031 U.S. institutions voted in 2014 and 2018. At the request of this magazine, the institute at Tufts removed non-U.S. resident students—who can't vote—from the findings to see if the results changed. Voting rates among STEM students remained among the lowest.)
Why aren't STEM students engaged in politics? "I have no reason to think that science students don't care about public policy issues," Tufts University's Thomas said. Instead, she believes that colleges fail to inspire STEM students to think beyond lectures and homework.
Enter the SENCER project—Science Education for New Civic Engagements and Responsibilities. Since 2001, the project has taught thousands of educators and students how to connect science and citizenship.
The roots of the project go back to 1990, when Rutgers University microbiologist Monica Devanas was assigned to teach a general-education class called "Biomedical Issues of AIDS." She decided to expand the curriculum to encompass insights about a wide range of societal issues. Guest speakers from the community, including a man with a grim diagnosis, talked about the disease and its spread. And Devanas's colleagues in a wide variety of disciplines offered course sections about AIDS and its role in areas such as literature, prisons and law.
"I always tried to make a connection, hoping to create scientifically engaged citizens by explaining the science to them in ways that they could understand."
When she first taught the class, 450 students signed up instead of the expected 100. Devanas, who'd only ever taught a few dozen students with a blackboard, suddenly had to figure out how to teach hundreds at once with the standard technology of the time: an overhead projector.
Devanas, who taught the hugely popular class for the next 18 years, said the course worked because it linked the AIDS epidemic, a hot topic at the time, to the outer world beyond immune cells and test tubes. "You really need to make it very personal and relevant. When you talk about treatment for AIDS or the cost of drugs: Who pays for this?" she said. "I always tried to make a connection, hoping to create scientifically engaged citizens by explaining the science to them in ways that they could understand."
How can other educators learn to create compelling courses? The SENCER website offers dozens of model classes for college and K–12 educators, all with the aim of making STEM classes relevant. An engineering course, for example, could expand a discussion about the nuts and bolts of automated vehicles into a conversation about whether the cars are a good idea in the first place, said Eliza J. Reilly, executive director of the National Center for Science and Civic Engagement, where SENCER is based.
SENCER, which is government-funded, holds regular conferences and has conducted research that supports the effectiveness of its programs. "This is an educational and intellectual project rather than a get-out-the-vote project. It's not intended to create activists. Instead, it's intended to help students understand that they have power as citizens," Reilly said.
What about long-term change? Will inspiring college students to engage with politics turn them into lifetime voters? Reilly said she's not aware of any research into whether STEM students continue to vote at lower levels after they graduate. That means there's no way to know if limited civic engagement in college translates to lifelong apathy. We also don't know if lower voting rates in college may help explain why few people with STEM backgrounds run for higher office.
There's another big unknown: If more people with STEM degrees vote, will they actually support fact-based policies and candidates who listen to science? The answer is not as obvious as it may appear. At Rutgers, professor Devanas pointed to the research of Yale University law/psychology professor Dan Kahan, who found that the most scientifically literate people in the U.S. also happen to be among those most polarized over climate change. In other words, a scientific mind may not necessarily translate to a pro-science vote.
Regardless of the ultimate choices that STEM students make at the ballot box, advocates will keep encouraging educators to connect science to the world beyond the classroom. As Tufts University's Thomas explained, "it just takes a lot of creativity and will."
[Editor's Note: To read other articles in this special magazine issue, visit the beautifully designed e-reader version.]
Following the Footsteps of a 105-Year-Old Sprinter
No human has run a distance of 100 meters faster than Usain Bolt’s lightning streak in 2009. He set this record at age 22. But what will Bolt’s time be when he’s 105?
At the Louisiana Senior Games in November 2021, 105-year-old Julia Hawkins of Baton Rouge became the oldest woman to run 100 meters in an official competition, qualifying her for this year's National Senior Games. Perhaps not surprisingly, she was the only competitor in the race for people 105 and older. In this Leaps.org video, I interview Hawkins about her lifestyle habits over the decades. Then I ask Steven Austad, a pioneer in studying the mechanisms of aging, for his scientific insights into how those aspiring to become super-agers might follow in Hawkins' remarkable footsteps.
Following the Footsteps of a 105-Year-Old Sprinter
No human has run a distance of 100 meters faster than Usain Bolt’s lightning streak in 2009. He set this record at age 22. But what will Bolt’s time be when ...Matt Fuchs is the editor-in-chief of Leaps.org. He is also a contributing reporter to the Washington Post and has written for the New York Times, Time Magazine, WIRED and the Washington Post Magazine, among other outlets. Follow him on Twitter @fuchswriter.
Monkeypox produces more telltale signs than COVID-19. Scientists think that a “ring” vaccination strategy can be used when these signs appear to help with squelching the current outbreak of this disease.
A new virus has emerged and stoked fears of another pandemic: monkeypox. Since May 2022, it has been detected in 29 U.S. states, the District of Columbia, and Puerto Rico among international travelers and their close contacts. On a worldwide scale, as of June 30, there have been 5,323 cases in 52 countries.
The good news: An existing vaccine can go a long way toward preventing a catastrophic outbreak. Because monkeypox is a close relative of smallpox, the same vaccine can be used—and it is about 85 percent effective against the virus, according to the World Health Organization (WHO).
Also on the plus side, monkeypox is less contagious with milder illness than smallpox and, compared to COVID-19, produces more telltale signs. Scientists think that a “ring” vaccination strategy can be used when these signs appear to help with squelching this alarming outbreak.
How it’s transmitted
Monkeypox spreads between people primarily through direct contact with infectious sores, scabs, or bodily fluids. People also can catch it through respiratory secretions during prolonged, face-to-face contact, according to the Centers for Disease Control and Prevention (CDC).
As of June 30, there have been 396 documented monkeypox cases in the U.S., and the CDC has activated its Emergency Operations Center to mobilize additional personnel and resources. The U.S. Department of Health and Human Services is aiming to boost testing capacity and accessibility. No Americans have died from monkeypox during this outbreak but, during the COVID-19 pandemic (February 2020 to date), Africa has documented 12,141 cases and 363 deaths from monkeypox.
Ring vaccination proved effective in curbing the smallpox and Ebola outbreaks. As the monkeypox threat continues to loom, scientists view this as the best vaccine approach.
A person infected with monkeypox typically has symptoms—for instance, fever and chills—in a contagious state, so knowing when to avoid close contact with others makes it easier to curtail than COVID-19.
Advantages of ring vaccination
For this reason, it’s feasible to vaccinate a “ring” of people around the infected individual rather than inoculating large swaths of the population. Ring vaccination proved effective in curbing the smallpox and Ebola outbreaks. As the monkeypox threat continues to loom, scientists view this as the best vaccine approach.
With many infections, “it normally would make sense to everyone to vaccinate more widely,” says Wesley C. Van Voorhis, a professor and director of the Center for Emerging and Re-emerging Infectious Diseases at the University of Washington School of Medicine in Seattle. However, “in this case, ring vaccination may be sufficient to contain the outbreak and also minimize the rare, but potentially serious side effects of the smallpox/monkeypox vaccine.”
There are two licensed smallpox vaccines in the United States: ACAM2000 (live Vaccina virus) and JYNNEOS (live virus non-replicating). The ACAM 2000, Van Voorhis says, is the old smallpox vaccine that, in rare instances, could spread diffusely within the body and cause heart problems, as well as severe rash in people with eczema or serious infection in immunocompromised patients.
To prevent organ damage, the current recommendation would be to use the JYNNEOS vaccine, says Phyllis Kanki, a professor of health sciences in the division of immunology and infectious diseases at the Harvard T.H. Chan School of Public Health. However, according to a report on the CDC’s website, people with immunocompromising conditions could have a higher risk of getting a severe case of monkeypox, despite being vaccinated, and “might be less likely to mount an effective response after any vaccination, including after JYNNEOS.”
In the late 1960s, the ring vaccination strategy became part of the WHO’s mission to globally eradicate smallpox, with the last known natural case described in Somalia in 1977. Ring vaccination can also refer to how a clinical trial is designed, as was the case in 2015, when this approach was used for researching the benefits of an investigational Ebola vaccine in Guinea, Kanki says.
“Since Monkeypox spreads by close contact and we have an effective vaccine, vaccinating high-risk individuals and their contacts may be a good strategy to limit transmission,” she says, adding that privacy is an important ethical principle that comes into play, as people with monkeypox would need to disclose their close contacts so that they could benefit from ring vaccination.
Rapid identification of cases and contacts—along with their cooperation—is essential for ring vaccination to be effective. Although mass vaccination also may work, the risk of infection to most of the population remains low while supply of the JYNNEOS vaccine is limited, says Stanley Deresinski, a clinical professor of medicine in the Infectious Disease Clinic at Stanford University School of Medicine.
Other strategies for preventing transmission
Ideally, the vaccine should be administered within four days of an exposure, but it’s recommended for up to 14 days. The WHO also advocates more widespread vaccination campaigns in the population segment with the most cases so far: men who engage in sex with other men.
The virus appears to be spreading in sexual networks, which differs from what was seen in previously reported outbreaks of monkeypox (outside of Africa), where risk was associated with travel to central or west Africa or various types of contact with individuals or animals from those locales. There is no evidence of transmission by food, but contaminated articles in the environment such as bedding are potential sources of the virus, Deresinski says.
Severe cases of monkeypox can occur, but “transmission of the virus requires close contact,” he says. “There is no evidence of aerosol transmission, as occurs with SARS-CoV-2, although it must be remembered that the smallpox virus, a close relative of monkeypox, was transmitted by aerosol.”
Deresinski points to the fact that in 2003, monkeypox was introduced into the U.S. through imports from Ghana of infected small mammals, such as Gambian giant rats, as pets. They infected prairie dogs, which also were sold as pets and, ultimately, this resulted in 37 confirmed transmissions to humans and 10 probable cases. A CDC investigation identified no cases of human-to-human transmission. Then, in 2021, a traveler flew from Nigeria to Dallas through Atlanta, developing skin lesions several days after arrival. Another CDC investigation yielded 223 contacts, although 85 percent were deemed to be at only minimal risk and the remainder at intermediate risk. No new cases were identified.
How much should we be worried
But how serious of a threat is monkeypox this time around? “Right now, the risk to the general public is very low,” says Scott Roberts, an assistant professor and associate medical director of infection prevention at Yale School of Medicine. “Monkeypox is spread through direct contact with infected skin lesions or through close contact for a prolonged period of time with an infected person. It is much less transmissible than COVID-19.”
The monkeypox incubation period—the time from infection until the onset of symptoms—is typically seven to 14 days but can range from five to 21 days, compared with only three days for the Omicron variant of COVID-19. With such a long incubation, there is a larger window to conduct contact tracing and vaccinate people before symptoms appear, which can prevent infection or lessen the severity.
But symptoms may present atypically or recognition may be delayed. “Ring vaccination works best with 100 percent adherence, and in the absence of a mandate, this is not achievable,” Roberts says.
At the outset of infection, symptoms include fever, chills, and fatigue. Several days later, a rash becomes noticeable, usually beginning on the face and spreading to other parts of the body, he says. The rash starts as flat lesions that raise and develop fluid, similar to manifestations of chickenpox. Once the rash scabs and falls off, a person is no longer contagious.
“It's an uncomfortable infection,” says Van Voorhis, the University of Washington School of Medicine professor. There may be swollen lymph nodes. Sores and rash are often limited to the genitals and areas around the mouth or rectum, suggesting intimate contact as the source of spread.
Symptoms of monkeypox usually last from two to four weeks. The WHO estimated that fatalities range from 3 to 6 percent. Although it’s believed to infect various animal species, including rodents and monkeys in west and central Africa, “the animal reservoir for the virus is unknown,” says Kanki, the Harvard T.H. Chan School of Public Health professor.
Too often, viruses originate in parts of the world that are too poor to grapple with them and may lack the resources to invest in vaccines and treatments. “This disease is endemic in central and west Africa, and it has basically been ignored until it jumped to the north and infected Europeans, Americans, and Canadians,” Van Voorhis says. “We have to do a better job in health care and prevention all over the world. This is the kind of thing that comes back to bite us.”