Michio Kaku Talks Life on Mars, Genetic Engineering, and Immortality

Dr. Michio Kaku

(photo credit AsianBoston/Rob Klein)

Today is the release of THE FUTURE OF HUMANITY, the latest book by the world-renowned physicist Dr. Michio Kaku. In it, he explores the astonishing technologies that could propel us to live on other planets and even to live forever. LeapsMag Editor-in-Chief Kira Peikoff recently chatted with Dr. Kaku about some of the ethical implications we need to consider as we hurtle toward our destiny among the stars. Our interview has been edited and condensed for clarity.

"Technology is like a double-edged sword. The question is, who wields it?"

A big part of your book discusses living on Mars, and you mention that nanotech, biotech and AI could help us do so in the next 100 years. But you also note that efforts to make the Red Planet habitable could backfire, such as using genetic engineering to produce an ideal fertilizer, which could make one life form push out all the others. How should we judge when a powerful new technology is ready to be tested?

Technology is like a double-edged sword. One side can cut against ignorance, poverty, disease. But the other side can cut against people. The question is, who wields the sword? It has to be wielded by people's interests. We have to look not at the needs of the military or corporations, but society as a whole, and we have to realize that every technology, not just the ones I mentioned in the book, has a dark side as well as a positive side.

On the positive side, you could terraform Mars using genetic engineering to create algae, plants that could thrive in the Martian atmosphere, and a self-sustaining agriculture where we could raise food crops. However, it has to be done carefully, because we don't want to have it overrun Mars, just like we have certain plants that overrun the natural environment here on Earth. So we have to do it slowly. It cannot be done all of a sudden in a crash program. We have to see what happens if we begin to terraform stretches of Martian landscape.

Elon Musk of SpaceX, who has pioneered much of these technologies, has stated that we can jumpstart terraforming Mars by detonating hydrogen bombs over the polar ice caps. Later he had to qualify that by saying that they are airbursts, not ground bursts, to minimize radiation. Other people have said, we don't know what a nuclear weapon would do. Would it destabilize Mars? Would it open cracks in the ice caps? So we have to think things through, not just make proposals. Another proposal is to use silver mirrors in space to reflect sunlight down to melt the ice caps, and that would be more environmentally friendly than using hydrogen bombs.

"Our grandkids, when they hit the age of 30, they may just decide to stop aging, and live at age 30 for many decades to come."

As far as colonizing Mars, you also talk about technologies that could potentially help us end aging, but you note that this could exacerbate overpopulation and an exodus from Earth -- the double-edged sword again. What's your personal view on whether anti-aging research should be pursued?

Anti-aging research is accelerating because of the human genome. We're now able to map the genomes of old people, compare them with the genomes of young people, and we can see where aging takes place. For example, in a car, aging takes place in the engine, because that's where we have moving parts and combustion. Where do we find that in a cell? The mitochondria, and so we do see a concentration of error build-up in the mitochondria, and we can envision one day repairing the mistakes, which could in turn increase our life span. Also we're discovering new enzymes like telomerase which allow us to stop the clock. So it's conceivable, I think not for my generation, but for the coming generations, perhaps our grandkids, when they hit the age of 30, they may just decide to stop aging, and live at age 30 for many decades to come.

The other byproduct of this of course is overpopulation. That's a social problem, but realize in places like Japan, we have the opposite problem, under-population, because the birth rate has fallen way below the replacement level, people live too long, and there's very little immigration there. Europe is next. So we have this bizarre situation where some places like Sub-Saharan Africa are still expanding, but other places we're going to see a contraction. Overall, the population will continue to rise, but it's going to slow down. Instead of this exponential curve that many people see in the media, it's going to be shaped like an "S" that rises rapidly and then seals off. The UN is now beginning to entertain the possibility that the population of the Earth may seal off sometime by the end of the century--that we'll hit a steady state.

"In the future, that composite image may be holographic, with all your videotapes, your memories, to create a near approximation of who you are, and centuries from now, you may have digital immortality."

Later in the book, you talk about achieving immortality through storing your digital consciousness, uploading your brain to a computer. Many people today find that notion bizarre or even repulsive, but you also wisely note that "what seems unethical or even immoral today might be ordinary or mundane in the future." What do you think is the key to bridging the gap between controversial breakthroughs and public acceptance?

I imagine that if someone from the Middle Ages, who is fresh from burning witches and heretics and torturing non-believers, were to wind up today in our society, they might go crazy. They might think all of society is a product of the Devil, because attitudes toward morality change. So we humans today cannot dictate what morality will be like 100 years from now. For example, test tube babies. When Louise Brown (the first test tube baby) was first born, the Catholic Church denounced it. Now, today, your wife, husband, you may be a test tube baby and we don't even blink.

There's a Silicon Valley company today that will take what is known about you on the Internet, your credit card transactions, your emails, and create a composite image of you. In the future, that composite image may be holographic, with all your videotapes, your memories, to create a near approximation of who you are, and centuries from now, you may have digital immortality—your memories, your sensations, will be recorded accurately, and an avatar will recreate it. Like for example, I wouldn't mind talking to Einstein. I wouldn't mind sitting down with the guy and having a great conversation about the universe.

And the Connectome Project, by the end of the century, will map the entire brain--that's every neuron--just like the genome project has mapped every gene. And we live with it, we don't even think twice about the fact that our genome exists. In the future, our connectome will also exist. And the connectome can reproduce your thoughts, your dreams, your sensations. We'll just live with that fact; it will be considered ordinary.

"A hundred years from now, we may want to merge with some of these technologies, rather than have to compete with robots."

Wow. In such a "post-human" era, our bodies could be replaced by robots or maintained by genetic engineering. Once these technologies become commercially available, do you think people should have the freedom to make changes or enhancements to themselves?

I think there should be laws passed at a certain point to prevent parents from going crazy trying to genetically engineer their child. Once we isolate the genes for studying, for good behavior, things like that, we may be tempted to tinker with it. I think a certain amount of tinkering is fine, but we don't want to let it get out of control. There has to be limits.

Also, we are in competition with robots of the future. A hundred years from now, robots are going to become very intelligent. Some people think they're going to take over. My attitude is that a hundred years from now, we may want to merge with some of these technologies, rather than have to compete with robots. But we're not going to look like some freaky robot because we're genetically hardwired to look good to the opposite sex, to look good to our peers. Hundreds of thousands of years ago, and hundreds of thousands of years into the future, we'll still look the same. We'll genetically modify ourselves a little bit, but we'll basically look the same.

That's an interesting point. It's amazing how fast technology is moving overall. Like at one point in the book, you mention that primates had never been cloned, but a few weeks ago, news broke that this just happened in China. Do you think we should slow down the dramatic pace of acceleration and focus on the ethical considerations, or should we still move full-steam ahead?

Well, CRISPR technology has accelerated us more than we previously thought. In the past, to tinker with genes, you had to cut and splice, and it was a lot of guesswork and trial and error. Now, you can zero in on the cutting process and streamline it, so cutting and splicing genes becomes much more accurate, and you can edit them just like you edit a book. Within the field of bioengineering, they have set up their own conferences to begin to police themselves into figuring out which domains are ethically dangerous and which areas can provide benefits for humanity, because they realize that this technology can go a little bit too fast.

"Where does truth come from? Truth comes from interaction with incorrect ideas."

You cannot recall a life form. Once a life form is created, it reproduces. That's what life does. If it reproduces outside the laboratory, it could take over. So we want to make sure that we don't have to recall a life form, like you would recall a Ford or a Chevrolet. Eventually governments may have to slow down the pace because it's moving very rapidly.

Lastly, you talk about the importance of democratic debate to resolve how controversial technology should be used. How can science-minded people bring the rest of society into these conversations, so that as much of society as possible is represented?

It's a question of where does truth come from? Truth comes from interaction with incorrect ideas--the collision of truth and untruth, rumors and fact. It doesn't come from a machine where you put in a quarter, and out comes the answer. It requires democratic debate. And that's where the Internet comes in, that's where the media comes in, that's where this interview comes in. You want to stimulate and educate the people so they know the dangers and promises of technology, and then engage with them about the moral implications, because these things are going to affect every aspect of our life in the future.

Kira Peikoff

Kira Peikoff is the editor-in-chief of Leaps.org. As a journalist, her work has appeared in The New York Times, Newsweek, Nautilus, Popular Mechanics, The New York Academy of Sciences, and other outlets. She is also the author of four suspense novels that explore controversial issues arising from scientific innovation: Living Proof, No Time to Die, Die Again Tomorrow, and Mother Knows Best. Peikoff holds a B.A. in Journalism from New York University and an M.S. in Bioethics from Columbia University. She lives in New Jersey with her husband and two young sons. Follow her on Twitter @KiraPeikoff.

Get our top stories twice a month
Follow us on

Astronaut and Expedition 64 Flight Engineer Soichi Noguchi of the Japan Aerospace Exploration Agency displays Extra Dwarf Pak Choi plants growing aboard the International Space Station. The plants were grown for the Veggie study which is exploring space agriculture as a way to sustain astronauts on future missions to the Moon or Mars.

Johnson Space Center/NASA

Astronauts at the International Space Station today depend on pre-packaged, freeze-dried food, plus some fresh produce thanks to regular resupply missions. This supply chain, however, will not be available on trips further out, such as the moon or Mars. So what are astronauts on long missions going to eat?

Going by the options available now, says Christel Paille, an engineer at the European Space Agency, a lunar expedition is likely to have only dehydrated foods. “So no more fresh product, and a limited amount of already hydrated product in cans.”

For the Mars mission, the situation is a bit more complex, she says. Prepackaged food could still constitute most of their food, “but combined with [on site] production of certain food products…to get them fresh.” A Mars mission isn’t right around the corner, but scientists are currently working on solutions for how to feed those astronauts. A number of boundary-pushing efforts are now underway.

Keep Reading Keep Reading
Payal Dhar
Payal is a writer based in New Delhi who has been covering science, technology, and society since 1998.

A brain expert weighs in on the cognitive biases that hold us back from adjusting to the new reality of Omicron.

Photo by Joshua Sortino on Unsplash

We are sticking our heads into the sand of reality on Omicron, and the results may be catastrophic.

Omicron is over 4 times more infectious than Delta. The Pfizer two-shot vaccine offers only 33% protection from infection. A Pfizer booster vaccine does raises protection to about 75%, but wanes to around 30-40 percent 10 weeks after the booster.

The only silver lining is that Omicron appears to cause a milder illness than Delta. Yet the World Health Organization has warned about the “mildness” narrative.

That’s because the much faster disease transmission and vaccine escape undercut the less severe overall nature of Omicron. That’s why hospitals have a large probability of being overwhelmed, as the Center for Disease Control warned, in this major Omicron wave.

Yet despite this very serious threat, we see the lack of real action. The federal government tightened international travel guidelines and is promoting boosters. Certainly, it’s crucial to get as many people to get their booster – and initial vaccine doses – as soon as possible. But the government is not taking the steps that would be the real game-changers.

Keep Reading Keep Reading
Gleb Tsipursky
Dr. Gleb Tsipursky is an internationally recognized thought leader on a mission to protect leaders from dangerous judgment errors known as cognitive biases by developing the most effective decision-making strategies. A best-selling author, he wrote Resilience: Adapt and Plan for the New Abnormal of the COVID-19 Coronavirus Pandemic and Pro Truth: A Practical Plan for Putting Truth Back Into Politics. His expertise comes from over 20 years of consulting, coaching, and speaking and training as the CEO of Disaster Avoidance Experts, and over 15 years in academia as a behavioral economist and cognitive neuroscientist. He co-founded the Pro-Truth Pledge project.