How Genetic Engineering Could Save the Coral Reefs

Underwater world with corals and tropical fish.

(© BRIAN_KINNEY/Fotolia)

Coral reefs are usually relegated to bit player status in television and movies, providing splashes of background color for "Shark Week," "Finding Nemo," and other marine-based entertainment.

In real life, the reefs are an absolutely crucial component of the ecosystem for both oceans and land, rivaling only the rain forests in their biological complexity. They provide shelter and sustenance for up to a quarter of all marine life, oxygenate the water, help protect coastlines from erosion, and support thousands of tourism jobs and businesses.

Genetic engineering could help scientists rebuild the reefs that have been lost, and turn those still alive into a souped-up version that can withstand warmer and even more acidic waters.

But the warming of the world's oceans -- exacerbated by an El Nino event that occurred between 2014 and 2016 -- has been putting the world's reefs under tremendous pressure. Their vibrant colors are being replaced by sepulchral whites and tans.

That's the result of bleaching -- a phenomenon that occurs when the warming waters impact the efficiency of the algae that live within the corals in a symbiotic relationship, providing nourishment via photosynthesis and eliminating waste products. The corals will often "shuffle" their resident algae, reacting in much the same way a landlord does with a non-performing tenant -- evicting them in the hopes of finding a better resident. But when better-performing algae does not appear, the corals become malnourished, eventually becoming deprived of their color and then their lives.

The situation is dire: Two-thirds of Australia's Great Barrier Reef have undergone a bleaching event in recent years, and it's believed up to half of that reef has died.

Moreover, hard corals are the ocean's redwood trees. They take centuries to grow, meaning it could take centuries or more to replace them.

Recent developments in genetic engineering -- and an accidental discovery by researchers at a Florida aquarium -- provide opportunities for scientists to potentially rebuild a large proportion of the reefs that have been lost, and perhaps turn those still alive into a souped-up version that can withstand warmer and even more acidic waters. But many questions have yet to be answered about both the biological impact on the world's oceans, and the ethics of reengineering the linchpin of its ecosystem.

How did we get here?

Coral bleaching was a regular event in the oceans even before they began to warm. As a result, natural selection weeds out the weaker species, says Rachel Levin, an American-born scientist who has performed much of her graduate work in Australia. But the current water warming trend is happening at a much higher rate than it ever has in nature, and neither the coral nor the algae can keep up.

"There is a big concern about giving one variant a huge fitness advantage, have it take over and impact the natural variation that is critical in changing environments."

In a widely-read paper published last year in the journal Frontiers in Microbiology, Levin and her colleagues put forth a fairly radical notion for preserving the coral reefs: Genetically modify their resident algae.

Levin says the focus on algae is a pragmatic decision. Unlike coral, they reproduce extremely rapidly. In theory, a modified version could quickly inhabit and stabilize a reef. About 70 percent of algae -- all part of the genus symbiodinium -- are host generalists. That means they will insert themselves into any species of coral.

In recent years, work on mapping the genomes of both algae and coral has been progressing rapidly. Scientists at Stanford University have recently been manipulating coral genomes using larvae manipulated with the CRISPR/Cas9 technology, although the experimentation has mostly been limited to its fluorescence.

Genetically modifying the coral reefs could seem like a straightforward proposition, but complications are on the horizon. Levin notes that as many as 20 different species of algae can reside within a single coral, so selecting the best ones to tweak may pose a challenge.

"The entire genus is made up of thousands of subspecies, all very genetically distinct variants. There is a huge genetic diversity, and there is a big concern about giving one variant a huge fitness advantage, have it take over and impact the natural variation that is critical in changing environments," Levin says.

Genetic modifications to an algae's thermal tolerance also poses the risk of what Levin calls an "off-target effect." That means a change to one part of the genome could lead to changes in other genes, such as those regulating growth, reproduction, or other elements crucial to its relationship with coral.

Phillip Cleves, a postdoctoral researcher at Stanford who has participated in the CRISPR/Cas9 work, says that future research will focus on studying the genes in coral that regulate the relationship with the algae. But he is so concerned about the ethical issues of genetically manipulating coral to adapt to a changing climate that he declined to discuss it in detail. And most coral species have not yet had their genomes fully mapped, he notes, suggesting that such work could still take years.

An Alternative: Coral Micro-fragmentation

In the meantime, there is another technique for coral preservation led by David Vaughan, senior scientist and program manager at the Mote Marine Laboratory and Aquarium in Sarasota, Florida.

Vaughan's research team has been experimenting in the past decade with hard coral regeneration. Their work had been slow and painstaking, since growing larvae into a coral the size of a quarter takes three years.

The micro-fragmenting process in some ways raises fewer ethical questions than genetically altering the species.

But then, one day in 2006, Vaughan accidentally broke off a tiny piece of coral in the research aquarium. That fragment grew to the size of a quarter in three months, apparently the result of the coral's ability to rapidly regenerate when injured. Further research found that breaking coral in this manner -- even to the size of a single polyp -- led to rapid growth in more than two-dozen species.

Mote is using this process, known as micro-fragmentation, to grow large numbers of coral rapidly, often fusing them on top of larger pieces of dead coral. These coral heads are then planted in the Florida Keys, which has experienced bleaching events over 12 of the last 14 years. The process has sped up almost exponentially; Mote has planted some 36,000 pieces of coral to date, but Vaughan says it's on track to plant 35,000 more pieces this year alone. That sum represents between 20 to 30 acres of restored reef. Mote is on track to plant another 100,000 pieces next year.

This rapid reproduction technique in some ways allows Mote scientists to control for the swift changes in ocean temperature, acidification and other factors. For example, using surviving pieces of coral from areas that have undergone bleaching events means these hardier strains will propagate much faster than nature allows.

Vaughan recently visited the Yucatan Peninsula to work with Mexican researchers who are going to embark on a micro-fragmenting initiative of their own.

The micro-fragmenting process in some ways raises fewer ethical questions than genetically altering the species, although Levin notes that this could also lead to fewer varieties of corals on the ocean floor -- a potential flattening of the colorful backdrops seen in television and movies.

But Vaughan has few qualms, saying this is an ecological imperative. He suggests that micro-fragmentation could serve as a stopgap until genomic technologies further advance.

"We have to use the technology at hand," he says. "This is a lot like responding when a forest burns down. We don't ask questions. We plant trees."

Ron Shinkman
Ron Shinkman is a veteran journalist whose work has appeared in the New England Journal of Medicine publication Catalyst, California Health Report, Fierce Healthcare, and many other publications. He has been a finalist for the prestigious NIHCM Foundation print journalism award twice in the past five years. Shinkman also served as Los Angeles Bureau Chief for Modern Healthcare and as a staff reporter for the Los Angeles Business Journal. He has an M.A. in English from California State University and a B.A. in English from UCLA.
Get our top stories twice a month
Follow us on

David Kurtz making DNA sequencing libraries in his lab.

Photo credit: Florian Scherer

When David M. Kurtz was doing his clinical fellowship at Stanford University Medical Center in 2009, specializing in lymphoma treatments, he found himself grappling with a question no one could answer. A typical regimen for these blood cancers prescribed six cycles of chemotherapy, but no one knew why. "The number seemed to be drawn out of a hat," Kurtz says. Some patients felt much better after just two doses, but had to endure the toxic effects of the entire course. For some elderly patients, the side effects of chemo are so harsh, they alone can kill. Others appeared to be cancer-free on the CT scans after the requisite six but then succumbed to it months later.

"Anecdotally, one patient decided to stop therapy after one dose because he felt it was so toxic that he opted for hospice instead," says Kurtz, now an oncologist at the center. "Five years down the road, he was alive and well. For him, just one dose was enough." Others would return for their one-year check up and find that their tumors grew back. Kurtz felt that while CT scans and MRIs were powerful tools, they weren't perfect ones. They couldn't tell him if there were any cancer cells left, stealthily waiting to germinate again. The scans only showed the tumor once it was back.

Blood cancers claim about 68,000 people a year, with a new diagnosis made about every three minutes, according to the Leukemia Research Foundation. For patients with B-cell lymphoma, which Kurtz focuses on, the survival chances are better than for some others. About 60 percent are cured, but the remaining 40 percent will relapse—possibly because they will have a negative CT scan, but still harbor malignant cells. "You can't see this on imaging," says Michael Green, who also treats blood cancers at University of Texas MD Anderson Medical Center.

Keep Reading Keep Reading
Lina Zeldovich
Lina Zeldovich has written about science, medicine and technology for Scientific American, Reader’s Digest, Mosaic Science and other publications. She’s an alumna of Columbia University School of Journalism and the author of the upcoming book, The Other Dark Matter: The Science and Business of Turning Waste into Wealth, from Chicago University Press. You can find her on and @linazeldovich.

Reporter Michaela Haas takes Aptera's Sol car out for a test drive in San Diego, Calif.

Courtesy Haas

The white two-seater car that rolls down the street in the Sorrento Valley of San Diego looks like a futuristic batmobile, with its long aerodynamic tail and curved underbelly. Called 'Sol' (Spanish for "sun"), it runs solely on solar and could be the future of green cars. Its maker, the California startup Aptera, has announced the production of Sol, the world's first mass-produced solar vehicle, by the end of this year. Aptera co-founder Chris Anthony points to the sky as he says, "On this sunny California day, there is ample fuel. You never need to charge the car."

If you live in a sunny state like California or Florida, you might never need to plug in the streamlined Sol because the solar panels recharge while driving and parked. Its 60-mile range is more than the average commuter needs. For cloudy weather, battery packs can be recharged electronically for a range of up to 1,000 miles. The ultra-aerodynamic shape made of lightweight materials such as carbon, Kevlar, and hemp makes the Sol four times more energy-efficient than a Tesla, according to Aptera. "The material is seven times stronger than steel and even survives hail or an angry ex-girlfriend," Anthony promises.

Keep Reading Keep Reading
Michaela Haas
Michaela Haas, PhD, is an award-winning reporter and author, most recently of Bouncing Forward: The Art and Science of Cultivating Resilience (Atria). Her work has been published in the New York Times, Mother Jones, the Huffington Post, and numerous other media. Find her at and Twitter @MichaelaHaas!