How Genetic Engineering Could Save the Coral Reefs

Underwater world with corals and tropical fish.

(© BRIAN_KINNEY/Fotolia)


Coral reefs are usually relegated to bit player status in television and movies, providing splashes of background color for "Shark Week," "Finding Nemo," and other marine-based entertainment.

In real life, the reefs are an absolutely crucial component of the ecosystem for both oceans and land, rivaling only the rain forests in their biological complexity. They provide shelter and sustenance for up to a quarter of all marine life, oxygenate the water, help protect coastlines from erosion, and support thousands of tourism jobs and businesses.

Genetic engineering could help scientists rebuild the reefs that have been lost, and turn those still alive into a souped-up version that can withstand warmer and even more acidic waters.

But the warming of the world's oceans -- exacerbated by an El Nino event that occurred between 2014 and 2016 -- has been putting the world's reefs under tremendous pressure. Their vibrant colors are being replaced by sepulchral whites and tans.

That's the result of bleaching -- a phenomenon that occurs when the warming waters impact the efficiency of the algae that live within the corals in a symbiotic relationship, providing nourishment via photosynthesis and eliminating waste products. The corals will often "shuffle" their resident algae, reacting in much the same way a landlord does with a non-performing tenant -- evicting them in the hopes of finding a better resident. But when better-performing algae does not appear, the corals become malnourished, eventually becoming deprived of their color and then their lives.

The situation is dire: Two-thirds of Australia's Great Barrier Reef have undergone a bleaching event in recent years, and it's believed up to half of that reef has died.

Moreover, hard corals are the ocean's redwood trees. They take centuries to grow, meaning it could take centuries or more to replace them.

Recent developments in genetic engineering -- and an accidental discovery by researchers at a Florida aquarium -- provide opportunities for scientists to potentially rebuild a large proportion of the reefs that have been lost, and perhaps turn those still alive into a souped-up version that can withstand warmer and even more acidic waters. But many questions have yet to be answered about both the biological impact on the world's oceans, and the ethics of reengineering the linchpin of its ecosystem.

How did we get here?

Coral bleaching was a regular event in the oceans even before they began to warm. As a result, natural selection weeds out the weaker species, says Rachel Levin, an American-born scientist who has performed much of her graduate work in Australia. But the current water warming trend is happening at a much higher rate than it ever has in nature, and neither the coral nor the algae can keep up.

"There is a big concern about giving one variant a huge fitness advantage, have it take over and impact the natural variation that is critical in changing environments."

In a widely-read paper published last year in the journal Frontiers in Microbiology, Levin and her colleagues put forth a fairly radical notion for preserving the coral reefs: Genetically modify their resident algae.

Levin says the focus on algae is a pragmatic decision. Unlike coral, they reproduce extremely rapidly. In theory, a modified version could quickly inhabit and stabilize a reef. About 70 percent of algae -- all part of the genus symbiodinium -- are host generalists. That means they will insert themselves into any species of coral.

In recent years, work on mapping the genomes of both algae and coral has been progressing rapidly. Scientists at Stanford University have recently been manipulating coral genomes using larvae manipulated with the CRISPR/Cas9 technology, although the experimentation has mostly been limited to its fluorescence.

Genetically modifying the coral reefs could seem like a straightforward proposition, but complications are on the horizon. Levin notes that as many as 20 different species of algae can reside within a single coral, so selecting the best ones to tweak may pose a challenge.

"The entire genus is made up of thousands of subspecies, all very genetically distinct variants. There is a huge genetic diversity, and there is a big concern about giving one variant a huge fitness advantage, have it take over and impact the natural variation that is critical in changing environments," Levin says.

Genetic modifications to an algae's thermal tolerance also poses the risk of what Levin calls an "off-target effect." That means a change to one part of the genome could lead to changes in other genes, such as those regulating growth, reproduction, or other elements crucial to its relationship with coral.

Phillip Cleves, a postdoctoral researcher at Stanford who has participated in the CRISPR/Cas9 work, says that future research will focus on studying the genes in coral that regulate the relationship with the algae. But he is so concerned about the ethical issues of genetically manipulating coral to adapt to a changing climate that he declined to discuss it in detail. And most coral species have not yet had their genomes fully mapped, he notes, suggesting that such work could still take years.

An Alternative: Coral Micro-fragmentation

In the meantime, there is another technique for coral preservation led by David Vaughan, senior scientist and program manager at the Mote Marine Laboratory and Aquarium in Sarasota, Florida.

Vaughan's research team has been experimenting in the past decade with hard coral regeneration. Their work had been slow and painstaking, since growing larvae into a coral the size of a quarter takes three years.

The micro-fragmenting process in some ways raises fewer ethical questions than genetically altering the species.

But then, one day in 2006, Vaughan accidentally broke off a tiny piece of coral in the research aquarium. That fragment grew to the size of a quarter in three months, apparently the result of the coral's ability to rapidly regenerate when injured. Further research found that breaking coral in this manner -- even to the size of a single polyp -- led to rapid growth in more than two-dozen species.

Mote is using this process, known as micro-fragmentation, to grow large numbers of coral rapidly, often fusing them on top of larger pieces of dead coral. These coral heads are then planted in the Florida Keys, which has experienced bleaching events over 12 of the last 14 years. The process has sped up almost exponentially; Mote has planted some 36,000 pieces of coral to date, but Vaughan says it's on track to plant 35,000 more pieces this year alone. That sum represents between 20 to 30 acres of restored reef. Mote is on track to plant another 100,000 pieces next year.

This rapid reproduction technique in some ways allows Mote scientists to control for the swift changes in ocean temperature, acidification and other factors. For example, using surviving pieces of coral from areas that have undergone bleaching events means these hardier strains will propagate much faster than nature allows.

Vaughan recently visited the Yucatan Peninsula to work with Mexican researchers who are going to embark on a micro-fragmenting initiative of their own.

The micro-fragmenting process in some ways raises fewer ethical questions than genetically altering the species, although Levin notes that this could also lead to fewer varieties of corals on the ocean floor -- a potential flattening of the colorful backdrops seen in television and movies.

But Vaughan has few qualms, saying this is an ecological imperative. He suggests that micro-fragmentation could serve as a stopgap until genomic technologies further advance.

"We have to use the technology at hand," he says. "This is a lot like responding when a forest burns down. We don't ask questions. We plant trees."

Ron Shinkman
Ron Shinkman is a veteran journalist whose work has appeared in the New England Journal of Medicine publication Catalyst, California Health Report, Fierce Healthcare, and many other publications. He has been a finalist for the prestigious NIHCM Foundation print journalism award twice in the past five years. Shinkman also served as Los Angeles Bureau Chief for Modern Healthcare and as a staff reporter for the Los Angeles Business Journal. He has an M.A. in English from California State University and a B.A. in English from UCLA.
Get our top stories twice a month
Follow us on
Brain Cancer Chromosomes. Chromosomes prepared from a malignant glioblastoma visualized by spectral karyotyping (SKY) reveal an enormous degree of chromosomal instability -- a hallmark of cancer. Created by Thomas Ried, 2014

Glioblastoma is an aggressive and deadly brain cancer, causing more than 10,000 deaths in the US per year. In the last 30 years there has only been limited improvement in the survival rate despite advances in radiation therapy and chemotherapy. Today the typical survival rate is just 14 months and that extra time is spent suffering from the adverse and often brutal effects of radiation and chemotherapy.

Scientists are trying to design more effective treatments for glioblastoma with fewer side effects. Now, a team at the Department of Neurosurgery at Houston Methodist Hospital has created a magnetic helmet-based treatment called oncomagnetic therapy: a promising non-invasive treatment for shrinking cancerous tumors. In the first patient tried, the device was able to reduce the tumor of a glioblastoma patient by 31%. The researchers caution, however, that much more research is needed to determine its safety and effectiveness.

Keep Reading Keep Reading
Sarah Philip
Sarah Philip is a London-based freelance journalist who writes about science, film and TV. You can follow her on Twitter @sarahph1lip.

Astronaut and Expedition 64 Flight Engineer Soichi Noguchi of the Japan Aerospace Exploration Agency displays Extra Dwarf Pak Choi plants growing aboard the International Space Station. The plants were grown for the Veggie study which is exploring space agriculture as a way to sustain astronauts on future missions to the Moon or Mars.

Johnson Space Center/NASA

Astronauts at the International Space Station today depend on pre-packaged, freeze-dried food, plus some fresh produce thanks to regular resupply missions. This supply chain, however, will not be available on trips further out, such as the moon or Mars. So what are astronauts on long missions going to eat?

Going by the options available now, says Christel Paille, an engineer at the European Space Agency, a lunar expedition is likely to have only dehydrated foods. “So no more fresh product, and a limited amount of already hydrated product in cans.”

For the Mars mission, the situation is a bit more complex, she says. Prepackaged food could still constitute most of their food, “but combined with [on site] production of certain food products…to get them fresh.” A Mars mission isn’t right around the corner, but scientists are currently working on solutions for how to feed those astronauts. A number of boundary-pushing efforts are now underway.

Keep Reading Keep Reading
Payal Dhar
Payal is a writer based in New Delhi who has been covering science, technology, and society since 1998.