AI and you: Is the promise of personalized nutrition apps worth the hype?

Personalized nutrition apps could provide valuable data to people trying to eat healthier, though more research must be done to show effectiveness.
As a type 2 diabetic, Michael Snyder has long been interested in how blood sugar levels vary from one person to another in response to the same food, and whether a more personalized approach to nutrition could help tackle the rapidly cascading levels of diabetes and obesity in much of the western world.
Eight years ago, Snyder, who directs the Center for Genomics and Personalized Medicine at Stanford University, decided to put his theories to the test. In the 2000s continuous glucose monitoring, or CGM, had begun to revolutionize the lives of diabetics, both type 1 and type 2. Using spherical sensors which sit on the upper arm or abdomen – with tiny wires that pierce the skin – the technology allowed patients to gain real-time updates on their blood sugar levels, transmitted directly to their phone.
It gave Snyder an idea for his research at Stanford. Applying the same technology to a group of apparently healthy people, and looking for ‘spikes’ or sudden surges in blood sugar known as hyperglycemia, could provide a means of observing how their bodies reacted to an array of foods.
“We discovered that different foods spike people differently,” he says. “Some people spike to pasta, others to bread, others to bananas, and so on. It’s very personalized and our feeling was that building programs around these devices could be extremely powerful for better managing people’s glucose.”
Unbeknown to Snyder at the time, thousands of miles away, a group of Israeli scientists at the Weizmann Institute of Science were doing exactly the same experiments. In 2015, they published a landmark paper which used CGM to track the blood sugar levels of 800 people over several days, showing that the biological response to identical foods can vary wildly. Like Snyder, they theorized that giving people a greater understanding of their own glucose responses, so they spend more time in the normal range, may reduce the prevalence of type 2 diabetes.
The commercial potential of such apps is clear, but the underlying science continues to generate intriguing findings.
“At the moment 33 percent of the U.S. population is pre-diabetic, and 70 percent of those pre-diabetics will become diabetic,” says Snyder. “Those numbers are going up, so it’s pretty clear we need to do something about it.”
Fast forward to 2022,and both teams have converted their ideas into subscription-based dietary apps which use artificial intelligence to offer data-informed nutritional and lifestyle recommendations. Snyder’s spinoff, January AI, combines CGM information with heart rate, sleep, and activity data to advise on foods to avoid and the best times to exercise. DayTwo–a start-up which utilizes the findings of Weizmann Institute of Science–obtains microbiome information by sequencing stool samples, and combines this with blood glucose data to rate ‘good’ and ‘bad’ foods for a particular person.
“CGMs can be used to devise personalized diets,” says Eran Elinav, an immunology professor and microbiota researcher at the Weizmann Institute of Science in addition to serving as a scientific consultant for DayTwo. “However, this process can be cumbersome. Therefore, in our lab we created an algorithm, based on data acquired from a big cohort of people, which can accurately predict post-meal glucose responses on a personal basis.”
The commercial potential of such apps is clear. DayTwo, who market their product to corporate employers and health insurers rather than individual consumers, recently raised $37 million in funding. But the underlying science continues to generate intriguing findings.
Last year, Elinav and colleagues published a study on 225 individuals with pre-diabetes which found that they achieved better blood sugar control when they followed a personalized diet based on DayTwo’s recommendations, compared to a Mediterranean diet. The journal Cell just released a new paper from Snyder’s group which shows that different types of fibre benefit people in different ways.
“The idea is you hear different fibres are good for you,” says Snyder. “But if you look at fibres they’re all over the map—it’s like saying all animals are the same. The responses are very individual. For a lot of people [a type of fibre called] arabinoxylan clearly reduced cholesterol while the fibre inulin had no effect. But in some people, it was the complete opposite.”
Eight years ago, Stanford's Michael Snyder began studying how continuous glucose monitors could be used by patients to gain real-time updates on their blood sugar levels, transmitted directly to their phone.
The Snyder Lab, Stanford Medicine
Because of studies like these, interest in precision nutrition approaches has exploded in recent years. In January, the National Institutes of Health announced that they are spending $170 million on a five year, multi-center initiative which aims to develop algorithms based on a whole range of data sources from blood sugar to sleep, exercise, stress, microbiome and even genomic information which can help predict which diets are most suitable for a particular individual.
“There's so many different factors which influence what you put into your mouth but also what happens to different types of nutrients and how that ultimately affects your health, which means you can’t have a one-size-fits-all set of nutritional guidelines for everyone,” says Bruce Y. Lee, professor of health policy and management at the City University of New York Graduate School of Public Health.
With the falling costs of genomic sequencing, other precision nutrition clinical trials are choosing to look at whether our genomes alone can yield key information about what our diets should look like, an emerging field of research known as nutrigenomics.
The ASPIRE-DNA clinical trial at Imperial College London is aiming to see whether particular genetic variants can be used to classify individuals into two groups, those who are more glucose sensitive to fat and those who are more sensitive to carbohydrates. By following a tailored diet based on these sensitivities, the trial aims to see whether it can prevent people with pre-diabetes from developing the disease.
But while much hope is riding on these trials, even precision nutrition advocates caution that the field remains in the very earliest of stages. Lars-Oliver Klotz, professor of nutrigenomics at Friedrich-Schiller-University in Jena, Germany, says that while the overall goal is to identify means of avoiding nutrition-related diseases, genomic data alone is unlikely to be sufficient to prevent obesity and type 2 diabetes.
“Genome data is rather simple to acquire these days as sequencing techniques have dramatically advanced in recent years,” he says. “However, the predictive value of just genome sequencing is too low in the case of obesity and prediabetes.”
Others say that while genomic data can yield useful information in terms of how different people metabolize different types of fat and specific nutrients such as B vitamins, there is a need for more research before it can be utilized in an algorithm for making dietary recommendations.
“I think it’s a little early,” says Eileen Gibney, a professor at University College Dublin. “We’ve identified a limited number of gene-nutrient interactions so far, but we need more randomized control trials of people with different genetic profiles on the same diet, to see whether they respond differently, and if that can be explained by their genetic differences.”
Some start-ups have already come unstuck for promising too much, or pushing recommendations which are not based on scientifically rigorous trials. The world of precision nutrition apps was dubbed a ‘Wild West’ by some commentators after the founders of uBiome – a start-up which offered nutritional recommendations based on information obtained from sequencing stool samples –were charged with fraud last year. The weight-loss app Noom, which was valued at $3.7 billion in May 2021, has been criticized on Twitter by a number of users who claimed that its recommendations have led to them developed eating disorders.
With precision nutrition apps marketing their technology at healthy individuals, question marks have also been raised about the value which can be gained through non-diabetics monitoring their blood sugar through CGM. While some small studies have found that wearing a CGM can make overweight or obese individuals more motivated to exercise, there is still a lack of conclusive evidence showing that this translates to improved health.
However, independent researchers remain intrigued by the technology, and say that the wealth of data generated through such apps could be used to help further stratify the different types of people who become at risk of developing type 2 diabetes.
“CGM not only enables a longer sampling time for capturing glucose levels, but will also capture lifestyle factors,” says Robert Wagner, a diabetes researcher at University Hospital Düsseldorf. “It is probable that it can be used to identify many clusters of prediabetic metabolism and predict the risk of diabetes and its complications, but maybe also specific cardiometabolic risk constellations. However, we still don’t know which forms of diabetes can be prevented by such approaches and how feasible and long-lasting such self-feedback dietary modifications are.”
Snyder himself has now been wearing a CGM for eight years, and he credits the insights it provides with helping him to manage his own diabetes. “My CGM still gives me novel insights into what foods and behaviors affect my glucose levels,” he says.
He is now looking to run clinical trials with his group at Stanford to see whether following a precision nutrition approach based on CGM and microbiome data, combined with other health information, can be used to reverse signs of pre-diabetes. If it proves successful, January AI may look to incorporate microbiome data in future.
“Ultimately, what I want to do is be able take people’s poop samples, maybe a blood draw, and say, ‘Alright, based on these parameters, this is what I think is going to spike you,’ and then have a CGM to test that out,” he says. “Getting very predictive about this, so right from the get go, you can have people better manage their health and then use the glucose monitor to help follow that.”
Following the Footsteps of a 105-Year-Old Sprinter
No human has run a distance of 100 meters faster than Usain Bolt’s lightning streak in 2009. He set this record at age 22. But what will Bolt’s time be when he’s 105?
At the Louisiana Senior Games in November 2021, 105-year-old Julia Hawkins of Baton Rouge became the oldest woman to run 100 meters in an official competition, qualifying her for this year's National Senior Games. Perhaps not surprisingly, she was the only competitor in the race for people 105 and older. In this Leaps.org video, I interview Hawkins about her lifestyle habits over the decades. Then I ask Steven Austad, a pioneer in studying the mechanisms of aging, for his scientific insights into how those aspiring to become super-agers might follow in Hawkins' remarkable footsteps.
Following the Footsteps of a 105-Year-Old Sprinter
No human has run a distance of 100 meters faster than Usain Bolt’s lightning streak in 2009. He set this record at age 22. But what will Bolt’s time be when ...Matt Fuchs is the editor-in-chief of Leaps.org. He is also a contributing reporter to the Washington Post and has written for the New York Times, Time Magazine, WIRED and the Washington Post Magazine, among other outlets. Follow him on Twitter @fuchswriter.
Monkeypox produces more telltale signs than COVID-19. Scientists think that a “ring” vaccination strategy can be used when these signs appear to help with squelching the current outbreak of this disease.
A new virus has emerged and stoked fears of another pandemic: monkeypox. Since May 2022, it has been detected in 29 U.S. states, the District of Columbia, and Puerto Rico among international travelers and their close contacts. On a worldwide scale, as of June 30, there have been 5,323 cases in 52 countries.
The good news: An existing vaccine can go a long way toward preventing a catastrophic outbreak. Because monkeypox is a close relative of smallpox, the same vaccine can be used—and it is about 85 percent effective against the virus, according to the World Health Organization (WHO).
Also on the plus side, monkeypox is less contagious with milder illness than smallpox and, compared to COVID-19, produces more telltale signs. Scientists think that a “ring” vaccination strategy can be used when these signs appear to help with squelching this alarming outbreak.
How it’s transmitted
Monkeypox spreads between people primarily through direct contact with infectious sores, scabs, or bodily fluids. People also can catch it through respiratory secretions during prolonged, face-to-face contact, according to the Centers for Disease Control and Prevention (CDC).
As of June 30, there have been 396 documented monkeypox cases in the U.S., and the CDC has activated its Emergency Operations Center to mobilize additional personnel and resources. The U.S. Department of Health and Human Services is aiming to boost testing capacity and accessibility. No Americans have died from monkeypox during this outbreak but, during the COVID-19 pandemic (February 2020 to date), Africa has documented 12,141 cases and 363 deaths from monkeypox.
Ring vaccination proved effective in curbing the smallpox and Ebola outbreaks. As the monkeypox threat continues to loom, scientists view this as the best vaccine approach.
A person infected with monkeypox typically has symptoms—for instance, fever and chills—in a contagious state, so knowing when to avoid close contact with others makes it easier to curtail than COVID-19.
Advantages of ring vaccination
For this reason, it’s feasible to vaccinate a “ring” of people around the infected individual rather than inoculating large swaths of the population. Ring vaccination proved effective in curbing the smallpox and Ebola outbreaks. As the monkeypox threat continues to loom, scientists view this as the best vaccine approach.
With many infections, “it normally would make sense to everyone to vaccinate more widely,” says Wesley C. Van Voorhis, a professor and director of the Center for Emerging and Re-emerging Infectious Diseases at the University of Washington School of Medicine in Seattle. However, “in this case, ring vaccination may be sufficient to contain the outbreak and also minimize the rare, but potentially serious side effects of the smallpox/monkeypox vaccine.”
There are two licensed smallpox vaccines in the United States: ACAM2000 (live Vaccina virus) and JYNNEOS (live virus non-replicating). The ACAM 2000, Van Voorhis says, is the old smallpox vaccine that, in rare instances, could spread diffusely within the body and cause heart problems, as well as severe rash in people with eczema or serious infection in immunocompromised patients.
To prevent organ damage, the current recommendation would be to use the JYNNEOS vaccine, says Phyllis Kanki, a professor of health sciences in the division of immunology and infectious diseases at the Harvard T.H. Chan School of Public Health. However, according to a report on the CDC’s website, people with immunocompromising conditions could have a higher risk of getting a severe case of monkeypox, despite being vaccinated, and “might be less likely to mount an effective response after any vaccination, including after JYNNEOS.”
In the late 1960s, the ring vaccination strategy became part of the WHO’s mission to globally eradicate smallpox, with the last known natural case described in Somalia in 1977. Ring vaccination can also refer to how a clinical trial is designed, as was the case in 2015, when this approach was used for researching the benefits of an investigational Ebola vaccine in Guinea, Kanki says.
“Since Monkeypox spreads by close contact and we have an effective vaccine, vaccinating high-risk individuals and their contacts may be a good strategy to limit transmission,” she says, adding that privacy is an important ethical principle that comes into play, as people with monkeypox would need to disclose their close contacts so that they could benefit from ring vaccination.
Rapid identification of cases and contacts—along with their cooperation—is essential for ring vaccination to be effective. Although mass vaccination also may work, the risk of infection to most of the population remains low while supply of the JYNNEOS vaccine is limited, says Stanley Deresinski, a clinical professor of medicine in the Infectious Disease Clinic at Stanford University School of Medicine.
Other strategies for preventing transmission
Ideally, the vaccine should be administered within four days of an exposure, but it’s recommended for up to 14 days. The WHO also advocates more widespread vaccination campaigns in the population segment with the most cases so far: men who engage in sex with other men.
The virus appears to be spreading in sexual networks, which differs from what was seen in previously reported outbreaks of monkeypox (outside of Africa), where risk was associated with travel to central or west Africa or various types of contact with individuals or animals from those locales. There is no evidence of transmission by food, but contaminated articles in the environment such as bedding are potential sources of the virus, Deresinski says.
Severe cases of monkeypox can occur, but “transmission of the virus requires close contact,” he says. “There is no evidence of aerosol transmission, as occurs with SARS-CoV-2, although it must be remembered that the smallpox virus, a close relative of monkeypox, was transmitted by aerosol.”
Deresinski points to the fact that in 2003, monkeypox was introduced into the U.S. through imports from Ghana of infected small mammals, such as Gambian giant rats, as pets. They infected prairie dogs, which also were sold as pets and, ultimately, this resulted in 37 confirmed transmissions to humans and 10 probable cases. A CDC investigation identified no cases of human-to-human transmission. Then, in 2021, a traveler flew from Nigeria to Dallas through Atlanta, developing skin lesions several days after arrival. Another CDC investigation yielded 223 contacts, although 85 percent were deemed to be at only minimal risk and the remainder at intermediate risk. No new cases were identified.
How much should we be worried
But how serious of a threat is monkeypox this time around? “Right now, the risk to the general public is very low,” says Scott Roberts, an assistant professor and associate medical director of infection prevention at Yale School of Medicine. “Monkeypox is spread through direct contact with infected skin lesions or through close contact for a prolonged period of time with an infected person. It is much less transmissible than COVID-19.”
The monkeypox incubation period—the time from infection until the onset of symptoms—is typically seven to 14 days but can range from five to 21 days, compared with only three days for the Omicron variant of COVID-19. With such a long incubation, there is a larger window to conduct contact tracing and vaccinate people before symptoms appear, which can prevent infection or lessen the severity.
But symptoms may present atypically or recognition may be delayed. “Ring vaccination works best with 100 percent adherence, and in the absence of a mandate, this is not achievable,” Roberts says.
At the outset of infection, symptoms include fever, chills, and fatigue. Several days later, a rash becomes noticeable, usually beginning on the face and spreading to other parts of the body, he says. The rash starts as flat lesions that raise and develop fluid, similar to manifestations of chickenpox. Once the rash scabs and falls off, a person is no longer contagious.
“It's an uncomfortable infection,” says Van Voorhis, the University of Washington School of Medicine professor. There may be swollen lymph nodes. Sores and rash are often limited to the genitals and areas around the mouth or rectum, suggesting intimate contact as the source of spread.
Symptoms of monkeypox usually last from two to four weeks. The WHO estimated that fatalities range from 3 to 6 percent. Although it’s believed to infect various animal species, including rodents and monkeys in west and central Africa, “the animal reservoir for the virus is unknown,” says Kanki, the Harvard T.H. Chan School of Public Health professor.
Too often, viruses originate in parts of the world that are too poor to grapple with them and may lack the resources to invest in vaccines and treatments. “This disease is endemic in central and west Africa, and it has basically been ignored until it jumped to the north and infected Europeans, Americans, and Canadians,” Van Voorhis says. “We have to do a better job in health care and prevention all over the world. This is the kind of thing that comes back to bite us.”