Got a Virus? Its Name Matters More Than You Think

A sick woman sneezing into a tissue.

(© Subbotina Anna/Fotolia)

It's a familiar scenario: You show up at the doctor feeling miserable—sneezing, coughing, lethargic. We've all been there. And we've all been told the same answer: we're suffering from "a virus."

Failing to establish a specific microbial cause undermines the health of individual patients—and potentially the public at large.

Some patients may be satisfied with that diagnosis, others may be frustrated, and still others may demand antibiotic treatment for a bacterial infection that is usually not even present. As an infectious disease doctor who specializes in pandemic preparedness, I detest using the catch-all "virus" diagnosis for a range of symptoms from common colds to life-threatening pneumonias to unexplained fevers. Failing to establish a specific microbial cause undermines the health of individual patients—and potentially the public at large.

Confirming a specific diagnosis to determine which virus is behind those nasty symptoms is not just an academic exercise. The benefits are plentiful. Patients can forego antibiotic treatment, possibly benefit from antiviral treatment, understand their illness, and be given a prognosis. Additionally, if hospitalized, patients with certain viral infections require specific types of precautions so as not to spread the virus within the hospital.

Another largely undervalued benefit of such an approach is that it allows experts to begin assembling an arsenal of tools that might stave off a global health catastrophe. With severe pandemics, such as the 1918 influenza pandemic that killed 50 to 100 million people, it can be challenging to predict which of the myriad microbial species (bacteria, viruses, fungi, parasites, prions) will be the most likely cause. Many different approaches to prediction exist, but there is a general lack of rigorous analysis about what it takes for any microorganism to reach the pantheon of pandemic pathogens. My colleagues and I at the Johns Hopkins Center for Health Security recently developed a new framework to understand the characteristics of pandemic pathogens.

One of our major conclusions is that the most likely pandemic pathogen will be viral and spread through respiratory means. Viruses rise to the top of the list because, when compared to other types of infectious agents, they have several features that confer pandemic potential: they mutate a lot, the speed of infection is rapid, and there are no broad-spectrum antivirals akin to broad-spectrum antibacterial agents. Contagion through breathing, coughing, and sneezing is likely because it is much more difficult for standard public health measures to extinguish respiratory spread agents compared to other routes of transmission like food, body fluids, or mosquitoes.

With this information, physicians and scientists can begin taking actions to prevent spread of the infection by developing vaccines, testing antiviral compounds, and making diagnostic tests for concerning viruses.

Many of the viral families that could pose a pandemic threat are very common causes of upper respiratory infections like influenza, the common cold, and bronchitis. These viruses cause a wide range of illnesses from mild coughs to serious pneumonias. Indeed, the 2009 H1N1 influenza pandemic virus was discovered in San Diego in a child with very mild illness in whom viral diagnostic testing was pursued. This event highlights the fact that such diseases are not only found in exotic locations in the developing world, but could appear anywhere.

Understanding the patterns of respiratory virus infections -- how frequent they are, which strains are predominating, changes in severity of disease, expanding geographic range -- may provide a glimpse into the first forays of a new human virus or an alert to changing behavior from a well-known virus. With this information, physicians and scientists can begin taking actions to prevent spread of the infection by developing vaccines, testing antiviral compounds, and making diagnostic tests for concerning viruses. Additionally, alerts to healthcare providers will provide greater situational awareness of the patterns of infection.

So, the next time you are given a wastebasket diagnosis of "viral syndrome," push your doctor a little harder. In 2018, we have countless diagnostic tests for viral infections available, many at the point-of-care, that too few physicians use. Not only will you be more satisfied with a real diagnosis, you may be spared an unnecessary course of antibiotics. You can also rest assured that having a name for your virus will help epidemiologists doing a very important job. While we have not yet technologically achieved the famed Tricorder of Star Trek fame that diagnoses everything with a sweep of the hand, using the tools we do have could be one of the keys to detecting the next pandemic virus early enough to intervene.

Amesh A. Adalja

Dr. Adalja is focused on emerging infectious disease, pandemic preparedness, and biosecurity. He has served on US government panels tasked with developing guidelines for the treatment of plague, botulism, and anthrax in mass casualty settings and the system of care for infectious disease emergencies, and as an external advisor to the New York City Health and Hospital Emergency Management Highly Infectious Disease training program, as well as on a FEMA working group on nuclear disaster recovery. Dr. Adalja is an Associate Editor of the journal Health Security. He was a coeditor of the volume Global Catastrophic Biological Risks, a contributing author for the Handbook of Bioterrorism and Disaster Medicine, the Emergency Medicine CorePendium, Clinical Microbiology Made Ridiculously Simple, UpToDate's section on biological terrorism, and a NATO volume on bioterrorism. He has also published in such journals as the New England Journal of Medicine, the Journal of Infectious Diseases, Clinical Infectious Diseases, Emerging Infectious Diseases, and the Annals of Emergency Medicine. He is a board-certified physician in internal medicine, emergency medicine, infectious diseases, and critical care medicine. Follow him on Twitter: @AmeshAA

Get our top stories twice a month
Follow us on

Reporter Michaela Haas takes Aptera's Sol car out for a test drive in San Diego, Calif.

Courtesy Haas

The white two-seater car that rolls down the street in the Sorrento Valley of San Diego looks like a futuristic batmobile, with its long aerodynamic tail and curved underbelly. Called 'Sol' (Spanish for "sun"), it runs solely on solar and could be the future of green cars. Its maker, the California startup Aptera, has announced the production of Sol, the world's first mass-produced solar vehicle, by the end of this year. Aptera co-founder Chris Anthony points to the sky as he says, "On this sunny California day, there is ample fuel. You never need to charge the car."

If you live in a sunny state like California or Florida, you might never need to plug in the streamlined Sol because the solar panels recharge while driving and parked. Its 60-mile range is more than the average commuter needs. For cloudy weather, battery packs can be recharged electronically for a range of up to 1,000 miles. The ultra-aerodynamic shape made of lightweight materials such as carbon, Kevlar, and hemp makes the Sol four times more energy-efficient than a Tesla, according to Aptera. "The material is seven times stronger than steel and even survives hail or an angry ex-girlfriend," Anthony promises.

Keep Reading Keep Reading
Michaela Haas
Michaela Haas, PhD, is an award-winning reporter and author, most recently of Bouncing Forward: The Art and Science of Cultivating Resilience (Atria). Her work has been published in the New York Times, Mother Jones, the Huffington Post, and numerous other media. Find her at and Twitter @MichaelaHaas!

A stock image of a home test for COVID-19.

Photo by Annie Spratt on Unsplash

Last summer, when fast and cheap Covid tests were in high demand and governments were struggling to manufacture and distribute them, a group of independent scientists working together had a bit of a breakthrough.

Working on the Just One Giant Lab platform, an online community that serves as a kind of clearing house for open science researchers to find each other and work together, they managed to create a simple, one-hour Covid test that anyone could take at home with just a cup of hot water. The group tested it across a network of home and professional laboratories before being listed as a semi-finalist team for the XPrize, a competition that rewards innovative solutions-based projects. Then, the group hit a wall: they couldn't commercialize the test.

Keep Reading Keep Reading
Christi Guerrini and Alex Pearlman

Christi Guerrini, JD, MPH studies biomedical citizen science and is an Associate Professor at Baylor College of Medicine. Alex Pearlman, MA, is a science journalist and bioethicist who writes about emerging issues in biotechnology. They have recently launched, a place for discussion about nontraditional research.