Good Worldwide Launches Leaps.org to Rebuild Public Trust in Science and Journalism
MARCH 15, 2021 -- LeapsMag, the award-winning online magazine created to encourage public discussion about scientific innovation, re-emerges today as Leaps.org, a non- profit media initiative within the Good Worldwide ecosystem, dedicated to rebuilding public trust in science as a force for good and fostering dialogue about the ethical implications of new breakthroughs. Leaps.org's news and commentary cover a wide range of topics including health and medicine, biotechnology, agriculture, research and development, space exploration, and environmental concerns. Notable contributors and interviewees include neuroscientist Sam Harris, geneticist George Church, Nobel Prize winner Eric Kandel, author Steven Pinker, virologist Angela Rasmussen, and many others.
Science and the media that report on it are facing unprecedented mistrust and suspicion, yet at the same time the COVID-19 pandemic has generated a growing public appetite for accessible information about scientific developments. President Biden has tasked his Surgeon General nominee Vivek Murthy with improving public trust in science as one of his key goals. The Kaiser Family Foundation reported in January that roughly 3 in 10 U.S. health care workers express hesitancy about getting a COVID-19 vaccine. A September 2020 Pew Research Center study found that "majorities across 18 of the 20 publics say that limited public understanding is a problem for coverage of scientific research."
And Edelman Worldwide released global survey results showing that trust in scientists and journalists is down compared with last year, and trust in all information sources is at record lows: "In a world of misinformation and media echo chambers," Edelman stated, "how can we rebuild the trust needed to enable the acceptance of science and innovation to create a brighter future for humanity?"
About Leaps.org
<p>Leaps.org is a not-for-profit program within the Good Worldwide ecosystem, which also includes Upworthy — a media platform that reaches over 150 million people monthly — whose mission is to share the best of humanity and inspire others to do the same.</p><p>Leaps.org publishes award-winning journalism, popularizes scientific progress on social media, and hosts forums about innovation, ethics, and the future of humanity. Leaps.org's projects and activities are supported by a consortium of like-minded partners including the Aspen Institute Science & Society Program, and supporters Leaps by Bayer, the Rita Allen Foundation, the Gordon and Betty Moore Foundation and the Howard Hughes Medical Institute.</p><p>Follow Leaps.org @makingsenseofscience on Instagram, @leaps_org on Twitter, and @leaps.org on Facebook and LinkedIn.</p>How a Deadly Fire Gave Birth to Modern Medicine
The Cocoanut Grove fire in Boston in 1942 tragically claimed 490 lives, but was the catalyst for several important medical advances.
On the evening of November 28, 1942, more than 1,000 revelers from the Boston College-Holy Cross football game jammed into the Cocoanut Grove, Boston's oldest nightclub. When a spark from faulty wiring accidently ignited an artificial palm tree, the packed nightspot, which was only designed to accommodate about 500 people, was quickly engulfed in flames. In the ensuing panic, hundreds of people were trapped inside, with most exit doors locked. Bodies piled up by the only open entrance, jamming the exits, and 490 people ultimately died in the worst fire in the country in forty years.
"People couldn't get out," says Dr. Kenneth Marshall, a retired plastic surgeon in Boston and president of the Cocoanut Grove Memorial Committee. "It was a tragedy of mammoth proportions."
Within a half an hour of the start of the blaze, the Red Cross mobilized more than five hundred volunteers in what one newspaper called a "Rehearsal for Possible Blitz." The mayor of Boston imposed martial law. More than 300 victims—many of whom subsequently died--were taken to Boston City Hospital in one hour, averaging one victim every eleven seconds, while Massachusetts General Hospital admitted 114 victims in two hours. In the hospitals, 220 victims clung precariously to life, in agonizing pain from massive burns, their bodies ravaged by infection.
The scene of the fire.
Boston Public Library
Tragic Losses Prompted Revolutionary Leaps
<p>But there is a silver lining: this horrific disaster prompted dramatic changes in safety regulations to prevent another catastrophe of this magnitude and led to the development of medical techniques that eventually saved millions of lives. It transformed burn care treatment and the use of plasma on burn victims, but most importantly, it introduced to the public a new wonder drug that revolutionized medicine, midwifed the birth of the modern pharmaceutical industry, and nearly doubled life expectancy, from 48 years at the turn of the 20<sup>th</sup> century to 78 years in the post-World War II years.</p><p>The devastating grief of the survivors also led to the first published study of post-traumatic stress disorder by pioneering psychiatrist Alexandra Adler, daughter of famed Viennese psychoanalyst Alfred Adler, who was a student of Freud. Dr. Adler studied the anxiety and depression that followed this catastrophe, according to the <em>New York Times</em>, and "later applied her findings to the treatment World War II veterans."</p><p>Dr. Ken Marshall is intimately familiar with the lingering psychological trauma of enduring such a disaster. His mother, an Irish immigrant and a nurse in the surgical wards at Boston City Hospital, was on duty that cold Thanksgiving weekend night, and didn't come home for four days. "For years afterward, she'd wake up screaming in the middle of the night," recalls Dr. Marshall, who was four years old at the time. "Seeing all those bodies lined up in neat rows across the City Hospital's parking lot, still in their evening clothes. It was always on her mind and memories of the horrors plagued her for the rest of her life."</p><p>The sheer magnitude of casualties prompted overwhelmed physicians to try experimental new procedures that were later successfully used to treat thousands of battlefield casualties. Instead of cutting off blisters and using dyes and tannic acid to treat burned tissues, which can harden the skin, they applied gauze coated with petroleum jelly. Doctors also refined the formula for using plasma--the fluid portion of blood and a medical technology that was just four years old--to replenish bodily liquids that evaporated because of the loss of the protective covering of skin.</p>From Forgotten Lab Experiment to Wonder Drug
<p>In 1928, Alexander Fleming discovered the curative powers of penicillin, which promised to eradicate infectious pathogens that killed millions every year. But the road to mass producing enough of the highly unstable mold was littered with seemingly unsurmountable obstacles and it remained a forgotten laboratory curiosity for over a decade. But Fleming never gave up and penicillin's eventual rescue from obscurity was a landmark in scientific history. </p><p>In 1940, a group at Oxford University, funded in part by the Rockefeller Foundation, isolated enough penicillin to test it on twenty-five mice, which had been infected with lethal doses of streptococci. Its therapeutic effects were miraculous—the untreated mice died within hours, while the treated ones played merrily in their cages, undisturbed. Subsequent tests on a handful of patients, who were brought back from the brink of death, confirmed that penicillin was indeed a wonder drug. But Britain was then being ravaged by the German Luftwaffe during the Blitz, and there were simply no resources to devote to penicillin during the Nazi onslaught.</p><p>In June of 1941, two of the Oxford researchers, Howard Florey and Ernst Chain, embarked on a clandestine mission to enlist American aid. Samples of the temperamental mold were stored in their coats. By October, the Roosevelt Administration had recruited four companies—Merck, Squibb, Pfizer and Lederle—to team up in a massive, top-secret development program. Merck, which had more experience with fermentation procedures, swiftly pulled away from the pack and every milligram they produced was zealously hoarded.</p><p>After the nightclub fire, the government ordered Merck to dispatch to Boston whatever supplies of penicillin that they could spare and to refine any crude penicillin broth brewing in Merck's fermentation vats. After working in round-the-clock relays over the course of three days, on the evening of December 1<sup>st</sup>, 1942, a refrigerated truck containing thirty-two liters of injectable penicillin left Merck's Rahway, New Jersey plant. It was accompanied by a convoy of police escorts through four states before arriving in the pre-dawn hours at Massachusetts General Hospital. Dozens of people were rescued from near-certain death in the first public demonstration of the powers of the antibiotic, and the existence of penicillin could no longer be kept secret from inquisitive reporters and an exultant public. The next day, the <em>Boston Globe</em> called it "priceless" and <em>Time</em> magazine dubbed it a "wonder drug."</p><p>Within fourteen months, penicillin production escalated exponentially, churning out enough to save the lives of thousands of soldiers, including many from the Normandy invasion. And in October 1945, just weeks after the Japanese surrender ended World War II, Alexander Fleming, Howard Florey and Ernst Chain were awarded the Nobel Prize in medicine. But penicillin didn't just save lives—it helped build some of the most innovative medical and scientific companies in history, including Merck, Pfizer, Glaxo and Sandoz. </p><p>"Every war has given us a new medical advance," concludes Marshall. "And penicillin was <em>the</em> great scientific advance of World War II."</p>This Boy Struggled to Walk Before Gene Therapy. Now, Such Treatments Are Poised to Explode.
Conner Curran, now 10 years old, can walk more than two miles after gene therapy treatment for his Duchenne's muscular dystrophy.
Conner Curran was diagnosed with Duchenne's muscular dystrophy in 2015 when he was four years old. It's the most severe form of the genetic disease, with a nearly inevitable progression toward total paralysis. Many Duchenne's patients die in their teens; the average lifespan is 26.
But Conner, who is now 10, has experienced some astonishing improvements in recent years. He can now walk for more than two miles at a time – an impossible journey when he was younger.
In 2018, Conner became the very first patient to receive gene therapy specific to treating Duchenne's. In the initial clinical trial of nine children, nearly 80 percent reacted positively to the treatment). A larger-scale stage 3 clinical trial is currently underway, with initial results expected next year.
Gene therapy involves altering the genes in an individual's cells to stop or treat a disease. Such a procedure may be performed by adding new gene material to existing cells, or editing the defective genes to improve their functionality.
Conner Curran holding a football post gene therapy treatment.
Courtesy of the Curran family