Enhancing Humans: Should We or Shouldn’t We?
Kira Peikoff was the editor-in-chief of Leaps.org from 2017 to 2021. As a journalist, her work has appeared in The New York Times, Newsweek, Nautilus, Popular Mechanics, The New York Academy of Sciences, and other outlets. She is also the author of four suspense novels that explore controversial issues arising from scientific innovation: Living Proof, No Time to Die, Die Again Tomorrow, and Mother Knows Best. Peikoff holds a B.A. in Journalism from New York University and an M.S. in Bioethics from Columbia University. She lives in New Jersey with her husband and two young sons. Follow her on Twitter @KiraPeikoff.

An illustration of a robust human.
A panel of leading experts gathered this week at a sold-out event in downtown Manhattan to talk about the science and the ethics of enhancing human beings -- making people "better than well" through biomedical interventions. Here are the ten most memorable quotes from their lively discussion, which was organized by the New York Academy of Sciences, the Aspen Brain Institute, and the Hastings Center.
1) "It's okay for us to be enhanced relative to our ancestors; we are with the smallpox vaccine." —Dr. George Church, iconic genetics pioneer; professor at Harvard University and MIT
Church was more concerned with equitable access to enhancements than the morality of intervening in the first place. "We missed the last person with polio and now it's spread around the world again," he lamented.
Discussing how enhancements might become part of our species in the near-future, he mentioned the possibility of doctors slightly "overshooting" an intervention to reverse cognitive decline, for example; or younger people using such an intervention off-label. Another way might be through organ transplants, using organs that are engineered to not get cancer, or to be resistant to pain, pathogens, or senescence.
2) "All the technology we will need to fundamentally transform our species already exists. Humans are made of code, and that code is writable, readable and hackable." —Dr. Jamie Metzl, a technology futurist and geopolitical expert; Senior Fellow of the Atlantic Council, an international affairs think tank
The speed of change is on an exponential curve, and the world where we're going is changing at a much faster rate than we're used to, Metzl said. For example, a baby born 1000 years ago compared to one born today would be basically the same. But a baby born 1000 years in the future would seem like superman to us now, thanks to new capabilities that will become embedded in future people's genes over time. So how will we get from here to there?
"We will line up for small incremental benefits. By the time people are that changed, we will have adapted to a whole new set of social norms."
But, he asked, will well-meaning changes dangerously limit the diversity of our species?
3) "We are locked in a competitive arms race on both an individual and communal level, which will make it very difficult to put the brakes on. Everybody needs to be part of this conversation because it's a conversation about the future of our species." —Jamie Metzl
China, for one, plans to genetically sequence half of all newborns by 2020. In the U.S., it is standard to screen for 34 health conditions in newborns (though the exact number varies by state). There are no national guidelines for newborn genomic screening, though the National Institutes of Health is currently funding several research studies to explore the ethical concerns, potential benefits, and limitations of doing so on a large scale.
4) "I find freedom in not directing exactly how my child will be." —Josephine Johnston, Director of Research at the Hastings Center, the world's oldest bioethics research institute
Johnston cautioned against a full-throttled embrace of biomedical enhancements. Parents seeking to remake nature to serve their own purpose would be "like helicopter parenting on steroids," she said. "It could be a kind of felt obligation, something parents don't want to do but feel they must in order to compete." She warned this would be "one way to totally ruin the parenting experience altogether. I would hate to be the kind of parent who selects and controls her child's traits and talents."
Among other concerns, she worried about parents aiming to comply with social norms through technological intervention. Would a black mom, for example, feel pressure to make her child's skin paler to alleviate racial bias?
5) "We need to seriously consider the risks of a future if a handful of private companies own and monetize a map of our thoughts at any given moment." – Meredith Whittaker, Research Scientist, Open Research Lead at Google, and Co-Director of New York University's AI Now Institute, examining the social implications of artificial intelligence
The recent boom in AI research is the result of the consolidation of the tech industry's resources; only seven companies have the means to create artificial intelligence at scale, and one of the innovations on the horizon is brain-computer interfaces.
Facebook, for example, has a team of 60 engineers working on BCIs to let you type with your mind. Elon Musk's company Neuralink is working on technology that is aiming for "direct lag-free interactions between our brains and our devices."
But who will own this data? In the future, could the National Security Agency ask Neuralink, et al. for your thought log?
6) "The economic, political, and social contexts are as important as the tech itself. We need to look at power, who gets to define normal, and who falls outside of this category?" – Meredith Whittaker
Raising concerns about AI bias, Whittaker discussed how data is often coded by affluent white men from the Bay Area, potentially perpetuating discrimination against women and racial minorities.
Facial recognition, she said, is 30 percent less accurate for black women than for white men. And voice recognition systems don't hear women's voices as well as men's, among many other examples. The big question is: "Who gets to decide what's normal? And how do we ensure that different versions of normal can exist between cultures and communities? It is impossible not see the high stakes here, and how oppressive classifications of normal can marginalize people."
From left: George Church, Jamie Metzl, Josephine Johnston, Meredith Whittaker
7) "We might draw a red line at cloning or germline enhancements, but when you define those or think of specific cases, you realize you threw the baby out with the bathwater." —George Church, answering a question about whether society should agree on any red lines to prohibit certain interventions
"We should be focusing on outcomes," he suggested. "Could enhancement be a consequence of curing a disease like cognitive decline? That would concern me about drawing red lines."
8) "We have the technology to create Black Mirror. We could create a social credit score and it's terrifying." —Meredith Whittaker
In China, she said, the government is calculating scores to rank citizens based on aggregates of data like their educational history, their friend graphs, their employment and credit history, and their record of being critical of the government. These scores have already been used to bar 12 million people from travel.
"If we don't have the ability to make a choice," she said, "it could be a very frightening future."
9) "These tools will make all kinds of wonderful realities possible. Nobody looks at someone dying of cancer and says that's natural." —Jamie Metzl
Using biomedical interventions to restore health is an unequivocal moral good. But other experts questioned whether there should be a limit in how far these technologies are taken to achieve normalcy and beyond.
10) "Cancer's the easy one; what about deafness?" —Josephine Johnston, in retort
Could one person's disability be another person's desired state? "We should be so suspicious" of using technology to eradicate different ways of being in the world, she warned. Hubris has led us down the wrong path in the past, such as when homosexuality was considered a mental disorder.
"If we sometimes make mistakes about disease or dysfunction," she said, "we might make mistakes about what is a valid experience of the human condition."
Kira Peikoff was the editor-in-chief of Leaps.org from 2017 to 2021. As a journalist, her work has appeared in The New York Times, Newsweek, Nautilus, Popular Mechanics, The New York Academy of Sciences, and other outlets. She is also the author of four suspense novels that explore controversial issues arising from scientific innovation: Living Proof, No Time to Die, Die Again Tomorrow, and Mother Knows Best. Peikoff holds a B.A. in Journalism from New York University and an M.S. in Bioethics from Columbia University. She lives in New Jersey with her husband and two young sons. Follow her on Twitter @KiraPeikoff.
In this week's Friday Five, attending sports events is linked to greater life satisfaction, AI can identify specific brain tumors in under 90 seconds, LSD - minus hallucinations - raises hopes for mental health, new research on the benefits of cold showers, and inspiring awe in your kids leads to behavior change.
The Friday Five covers five stories in research that you may have missed this week. There are plenty of controversies and troubling ethical issues in science – and we get into many of them in our online magazine – but this news roundup focuses on new scientific theories and progress to give you a therapeutic dose of inspiration headed into the weekend.
This episode includes an interview with Dr. Helen Keyes, Head of the School of Psychology and Sports Science at Anglia Ruskin University.
Listen on Apple | Listen on Spotify | Listen on Stitcher | Listen on Amazon | Listen on Google
- Attending sports events is linked to greater life satisfaction
- Identifying specific brain tumors in under 90 seconds with AI
- LSD - minus hallucinations - raises hopes for mental health
- New research on the benefits of cold showers
- Inspire awe in your kids and reap the benefits
Matt Fuchs is the editor-in-chief of Leaps.org and Making Sense of Science. He is also a contributing reporter to the Washington Post and has written for the New York Times, Time Magazine, WIRED and the Washington Post Magazine, among other outlets. Follow him @fuchswriter.
Residents of Fountain Hills, a small town near Phoenix, Arizona, fought against the night sky pollution to restore their Milky Way skies.
As a graduate student in observational astronomy at the University of Arizona during the 1970s, Diane Turnshek remembers the starry skies above the Kitt Peak National Observatory on the Tucson outskirts. Back then, she could observe faint objects like nebulae, galaxies, and star clusters on most nights.
When Turnshek moved to Pittsburgh in 1981, she found it almost impossible to see a clear night sky because the city’s countless lights created a bright dome of light called skyglow. Over the next two decades, Turnshek almost forgot what a dark sky looked like. She witnessed pristine dark skies in their full glory again during a visit to the Mars Desert Research Station in Utah in early 2000s.
“I was shocked at how beautiful the dark skies were in the West. That is when I realized that most parts of the world have lost access to starry skies because of light pollution,” says Turnshek, an astronomer and lecturer at Carnegie Mellon University. In 2015, she became a dark sky advocate.
Light pollution is defined as the excessive or wasteful use of artificial light.
Light-emitting diodes (LEDs) -- which became commercially available in 2002 and rapidly gained popularity in offices, schools, and hospitals when their price dropped six years later — inadvertently fueled the surge in light pollution. As traditional light sources like halogen, fluorescent, mercury, and sodium vapor lamps have been phased out or banned, LEDs became the main source of lighting globally in 2019. Switching to LEDs has been lauded as a win-win decision. Not only are they cheap but they also consume a fraction of electricity compared to their traditional counterparts.
But as cheap LED installations became omnipresent, they increased light pollution. “People have been installing LEDs thinking they are making a positive change for the environment. But LEDs are a lot brighter than traditional light sources,” explains Ashley Wilson, director of conservation at the International Dark-Sky Association (IDA). “Despite being energy-efficient, they are increasing our energy consumption. No one expected this kind of backlash from switching to LEDs.”
Light pollution impacts the circadian rhythms of all living beings — the natural internal process that regulates the sleep–wake cycle.
Currently, more than 80 percent of the world lives under light-polluted skies. In the U.S. and Europe, that figure is above 99 percent.
According to the IDA, $3 billion worth of electricity is lost to skyglow every year in the U.S. alone — thanks to unnecessary and poorly designed outdoor lighting installations. Worse, the resulting light pollution has insidious impacts on humans and wildlife — in more ways than one.
Disrupting the brain’s clock
Light pollution impacts the circadian rhythms of all living beings—the natural internal process that regulates the sleep–wake cycle. Humans and other mammals have neurons in their retina called intrinsically photosensitive retinal ganglion cells (ipRGCs). These cells collect information about the visual world and directly influence the brain’s biological clock in the hypothalamus.
The ipRGCs are particularly sensitive to the blue light that LEDs emit at high levels, resulting in suppression of melatonin, a hormone that helps us sleep. A 2020 JAMA Psychiatry study detailed how teenagers who lived in areas with bright outdoor lighting at night went to bed late and slept less, which made them more prone to mood disorders and anxiety.
“Many people are skeptical when they are told something as ubiquitous as lights could have such profound impacts on public health,” says Gena Glickman, director of the Chronobiology, Light and Sleep Lab at Uniformed Services University. “But when the clock in our brains gets exposed to blue light at nighttime, it could result in a lot of negative consequences like impaired cognitive function and neuro-endocrine disturbances.”
In the last 12 years, several studies indicated that light pollution exposure is associated with obesity and diabetes in humans and animals alike. While researchers are still trying to understand the exact underlying mechanisms, they found that even one night of too much light exposure could negatively affect the metabolic system. Studies have linked light pollution to a higher risk of hormone-sensitive cancers like breast and prostate cancer. A 2017 study found that female nurses exposed to light pollution have a 14 percent higher risk of breast cancer. The World Health Organization (WHO) identified long-term night shiftwork as a probable cause of cancer.
“We ignore our biological need for a natural light and dark cycle. Our patterns of light exposure have consequently become different from what nature intended,” explains Glickman.
Circadian lighting systems, designed to match individuals’ circadian rhythms, might help. The Lighting Research Center at Rensselaer Polytechnic Institute developed LED light systems that mimic natural lighting fluxes, required for better sleep. In the morning the lights shine brightly as does the sun. After sunset, the system dims, once again mimicking nature, which boosts melatonin production. It can even be programmed to increase blue light indoors when clouds block sunlight’s path through windows. Studies have shown that such systems might help reduce sleep fragmentation and cognitive decline. People who spend most of their day indoors can benefit from such circadian mimics.
When Diane Turnshek moved to Pittsburgh, she found it almost impossible to see a clear night sky because the city’s countless lights created a bright dome of light called skyglow.
Diane Turnshek
Leading to better LEDs
Light pollution disrupts the travels of millions of migratory birds that begin their long-distance journeys after sunset but end up entrapped within the sky glow of cities, becoming disoriented. A 2017 study in Nature found that nocturnal pollinators like bees, moths, fireflies and bats visit 62 percent fewer plants in areas with artificial lights compared to dark areas.
“On an evolutionary timescale, LEDs have triggered huge changes in the Earth’s environment within a relative blink of an eye,” says Wilson, the director of IDA. “Plants and animals cannot adapt so fast. They have to fight to survive with their existing traits and abilities.”
But not all types of LEDs are inherently bad -- it all comes down to how much blue light they emit. During the day, the sun emits blue light waves. By sunset, it’s replaced by red and orange light waves that stimulate melatonin production. LED’s artificial blue light, when shining at night, disrupts that. For some unknown reason, there are more bluer color LEDs made and sold.
“Communities install blue color temperature LEDs rather than redder color temperature LEDs because more of the blue ones are made; they are the status quo on the market,” says Michelle Wooten, an assistant professor of astronomy at the University of Alabama at Birmingham.
Most artificial outdoor light produced is wasted as human eyes do not use them to navigate their surroundings.
While astronomers and the IDA have been educating LED manufacturers about these nuances, policymakers struggle to keep up with the growing industry. But there are things they can do—such as requiring LEDs to include dimmers. “Most LED installations can be dimmed down. We need to make the dimmable drivers a mandatory requirement while selling LED lighting,” says Nancy Clanton, a lighting engineer, designer, and dark sky advocate.
Some lighting companies have been developing more sophisticated LED lights that help support melatonin production. Lighting engineers at Crossroads LLC and Nichia Corporation have been working on creating LEDs that produce more light in the red range. “We live in a wonderful age of technology that has given us these new LED designs which cut out blue wavelengths entirely for dark-sky friendly lighting purposes,” says Wooten.
Dimming the lights to see better
The IDA and advocates like Turnshek propose that communities turn off unnecessary outdoor lights. According to the Department of Energy, 99 percent of artificial outdoor light produced is wasted as human eyes do not use them to navigate their surroundings.
In recent years, major cities like Chicago, Austin, and Philadelphia adopted the “Lights Out” initiative encouraging communities to turn off unnecessary lights during birds’ peak migration seasons for 10 days at a time. “This poses an important question: if people can live without some lights for 10 days, why can’t they keep them turned off all year round,” says Wilson.
Most communities globally believe that keeping bright outdoor lights on all night increases security and prevents crime. But in her studies of street lights’ brightness levels in different parts of the US — from Alaska to California to Washington — Clanton found that people felt safe and could see clearly even at low or dim lighting levels.
Clanton and colleagues installed LEDs in a Seattle suburb that provided only 25 percent of lighting levels compared to what they used previously. The residents reported far better visibility because the new LEDs did not produce glare. “Visual contrast matters a lot more than lighting levels,” Clanton says. Additionally, motion sensor LEDs for outdoor lighting can go a long way in reducing light pollution.
Flipping a switch to preserve starry nights
Clanton has helped draft laws to reduce light pollution in at least 17 U.S. states. However, poor awareness of light pollution led to inadequate enforcement of these laws. Also, getting thousands of counties and municipalities within any state to comply with these regulations is a Herculean task, Turnshek points out.
Fountain Hills, a small town near Phoenix, Arizona, has rid itself of light pollution since 2018, thanks to the community's efforts to preserve dark skies.
Until LEDs became mainstream, Fountain Hills enjoyed starry skies despite its proximity to Phoenix. A mountain surrounding the town blocks most of the skyglow from the city.
“Light pollution became an issue in Fountain Hills over the years because we were not taking new LED technologies into account. Our town’s lighting code was antiquated and out-of-date,” says Vicky Derksen, a resident who is also a part of the Fountain Hills Dark Sky Association founded in 2017. “To preserve dark skies, we had to work with the entire town to update the local lighting code and convince residents to follow responsible outdoor lighting practices.”
Derksen and her team first tackled light pollution in the town center which has a faux fountain in the middle of a lake. “The iconic centerpiece, from which Fountain Hills got its name, had the wrong types of lighting fixtures, which created a lot of glare,” adds Derksen. They then replaced several other municipal lighting fixtures with dark-sky-friendly LEDs.
The results were awe-inspiring. After a long time, residents could see the Milky Way with crystal clear clarity. Star-gazing activities made a strong comeback across the town. But keeping light pollution low requires constant work.
Derksen and other residents regularly measure artificial light levels in
Fountain Hills. Currently, the only major source of light pollution is from extremely bright, illuminated signs which local businesses had installed in different parts of the town. While Derksen says it is an uphill battle to educate local businesses about light pollution, Fountain Hills residents are determined to protect their dark skies.
“When a river gets polluted, it can take several years before clean-up efforts see any tangible results,” says Derksen. “But the effects are immediate when you work toward reducing light pollution. All it requires is flipping a switch.”