Dadbot, Wifebot, Friendbot: The Future of Memorializing Avatars

In 2015, about a year before he was diagnosed with terminal lung cancer, John Vlahos posed for a picture with his son, James.
In 2016, when my family found out that my father was dying from cancer, I did something that at the time felt completely obvious: I started building a chatbot replica of him.
I simply wanted to create an interactive way to share key parts of his life story.
I was not under any delusion that the Dadbot, as I soon began calling it, would be a true avatar of him. From my research about the voice computing revolution—Siri, Alexa, the Google Assistant—I knew that fully humanlike AIs, like you see in the movies, were a vast ways from technological reality. Replicating my dad in any real sense was never the goal, anyway; that notion gave me the creeps.
Instead, I simply wanted to create an interactive way to share key parts of his life story: facts about his ancestors in Greece. Memories from growing up. Stories about his hobbies, family life, and career. And I wanted the Dadbot, which sent text messages and audio clips over Facebook Messenger, to remind me of his personality—warm, erudite, and funny. So I programmed it to use his distinctive phrasings; to tell a few of his signature jokes and sing his favorite songs.
While creating the Dadbot, a laborious undertaking that sprawled into 2017, I fixated on two things. The first was getting the programming right, which I did using a conversational agent authoring platform called PullString. The second, far more wrenching concern was my father's health. Failing to improve after chemotherapy and immunotherapy, and steadily losing energy, weight, and the animating sparkle of life, he died on February 9.
John Vlahos at a family reunion in the summer of 2016, a few months after his cancer diagnosis.
(Courtesy James Vlahos)
After a magazine article that I wrote about the Dadbot came out in the summer of 2017, messages poured in from readers. While most people simply expressed sympathy, some conveyed a more urgent message: They wanted their own memorializing chatbots. One man implored me to make a bot for him; he had been diagnosed with cancer and wanted his six-month-old daughter to have a way to remember him. A technology entrepreneur needed advice on replicating what I did for her father, who had stage IV cancer. And a teacher in India asked me to engineer a conversational replica of her son, who had recently been struck and killed by a bus.
Journalists from around the world also got in touch for interviews, and they inevitably came around to the same question. Will virtual immortality, they asked, ever become a business?
The prospect of this happening had never crossed my mind. I was consumed by my father's struggle and my own grief. But the notion has since become head-slappingly obvious. I am not the only person to confront the loss of a loved one; the experience is universal. And I am not alone in craving a way to keep memories alive. Of course people like the ones who wrote me will get Dadbots, Mombots, and Childbots of their own. If a moonlighting writer like me can create a minimum viable product, then a company employing actual computer scientists could do much more.
But this prospect raises unanswered and unsettling questions. For businesses, profit, and not some deeply personal mission, will be the motivation. This shift will raise issues that I didn't have to confront. To make money, a virtual immortality company could follow the lucrative but controversial business model that has worked so well for Google and Facebook. To wit, a company could provide the memorializing chatbot for free and then find ways to monetize the attention and data of whoever communicated with it. Given the copious amount of personal information flowing back and forth in conversations with replica bots, this would be a data gold mine for the company—and a massive privacy risk for users.
Virtual immortality as commercial product will doubtless become more sophisticated.
Alternately, a company could charge for memorializing avatars, perhaps with an annual subscription fee. This would put the business in a powerful position. Imagine the fee getting hiked each year. A customer like me would find himself facing a terrible decision—grit my teeth and keep paying, or be forced to pull the plug on the best, closest reminder of a loved one that I have. The same person would effectively wind up dying twice.
Another way that a beloved digital avatar could die is if the company that creates it ceases to exist. This is no mere academic concern for me: Earlier this year, PullString was swallowed up by Apple. I'm still able to access the Dadbot on my own computer, fortunately, but the acquisition means that other friends and family members can no longer chat with him remotely.
Startups like PullString, of course, are characterized by impermanence; they tend to get snapped up by bigger companies or run out of venture capital and fold. But even if big players like, say, Facebook or Google get into the virtual immortality game, we can't count on them existing even a few decades from now, which means that the avatars enabled by their technology would die, too.
The permanence problem is the biggest hurdle faced by the fledgling enterprise of virtual immortality. So some entrepreneurs are attempting to enable avatars whose existence isn't reliant upon any one company or set of computer servers. "By leveraging the power of blockchain and decentralized software to replicate information, we help users create avatars that live on forever," says Alex Roy, the founder and CEO of the startup Everlife.ai. But until this type of solution exists, give props to conventional technology for preserving memories: printed photos and words on paper can last for centuries.
The fidelity of avatars—just how lifelike they are—also raises serious concerns. Before I started creating the Dadbot, I worried that the tech might be just good enough to remind my family of the man it emulated, but so far off from my real father that it gave us all the creeps. But because the Dadbot was a simple chatbot and not some all-knowing AI, and because the interface was a messaging app, there was no danger of him encroaching on the reality of my actual dad.
But virtual immortality as commercial product will doubtless become more sophisticated. Avatars will have brains built by teams of computer scientists employing the latest techniques in conversational AI. The replicas will not just text but also speak, using synthetic voices that emulate the ones of the people being memorialized. They may even come to life as animated clones on computer screens or in 3D with the help of virtual reality headsets.
What fascinates me is how technology can help to preserve the past—genuine facts and memories from peoples' lives.
These are all lines that I don't personally want to cross; replicating my dad was never the goal. I also never aspired to have some synthetic version of him that continued to exist in the present, capable of acquiring knowledge about the world or my life and of reacting to it in real time.
Instead, what fascinates me is how technology can help to preserve the past—genuine facts and memories from people's lives—and their actual voices so that their stories can be shared interactively after they have gone. I'm working on ideas for doing this via voice computing platforms like Alexa and Assistant, and while I don't have all of the answers yet, I'm excited to figure out what might be possible.
[Adapted from Talk to Me: How Voice Computing Will Transform the Way We Live, Work, and Think (Houghton Mifflin Harcourt, March 26, 2019).]
Tech-related injuries are becoming more common as many people depend on - and often develop addictions for - smart phones and computers.
In the 1990s, a mysterious virus spread throughout the Massachusetts Institute of Technology Artificial Intelligence Lab—or that’s what the scientists who worked there thought. More of them rubbed their aching forearms and massaged their cricked necks as new computers were introduced to the AI Lab on a floor-by-floor basis. They realized their musculoskeletal issues coincided with the arrival of these new computers—some of which were mounted high up on lab benches in awkward positions—and the hours spent typing on them.
Today, these injuries have become more common in a society awash with smart devices, sleek computers, and other gadgets. And we don’t just get hurt from typing on desktop computers; we’re massaging our sore wrists from hours of texting and Facetiming on phones, especially as they get bigger in size.
In 2007, the first iPhone measured 3.5-inches diagonally, a measurement known as the display size. That’s been nearly doubled by the newest iPhone 13 Pro, which has a 6.7-inch display. Other phones, too, like the Google Pixel 6 and the Samsung Galaxy S22, have bigger screens than their predecessors. Physical therapists and orthopedic surgeons have had to come up with names for a variety of new conditions: selfie elbow, tech neck, texting thumb. Orthopedic surgeon Sonya Sloan says she sees selfie elbow in younger kids and in women more often than men. She hears complaints related to technology once or twice a day.
The addictive quality of smartphones and social media means that people spend more time on their devices, which exacerbates injuries. According to Statista, 68 percent of those surveyed spent over three hours a day on their phone, and almost half spent five to six hours a day. Another report showed that people dedicate a third of their day to checking their phones, while the Media Effects Research Laboratory at Pennsylvania State University has found that bigger screens, ideal for entertainment purposes, immerse their users more than smaller screens. Oversized screens also provide easier navigation and more space for those with bigger hands or trouble seeing.
But others with conditions like arthritis can benefit from smaller phones. In March of 2016, Apple released the iPhone SE with a display size of 4.7 inches—an inch smaller than the iPhone 7, released that September. Apple has since come out with two more versions of the diminutive iPhone SE, one in 2020 and another in 2022.
These devices are now an inextricable part of our lives. So where does the burden of responsibility lie? Is it with consumers to adjust body positioning, get ergonomic workstations, and change habits to abate tech-related pain? Or should tech companies be held accountable?
Kavin Senapathy, a freelance science journalist, has the Google Pixel 6. She was drawn to the phone because Google marketed the Pixel 6’s camera as better at capturing different skin tones. But this phone boasts one of the largest display sizes on the market: 6.4 inches.
Senapathy was diagnosed with carpal and cubital tunnel syndromes in 2017 and fibromyalgia in 2019. She has had to create a curated ergonomic workplace setup, otherwise her wrists and hands get weak and tingly, and she’s had to adjust how she holds her phone to prevent pain flares.
Recently, Senapathy underwent an electromyography, or an EMG, in which doctors insert electrodes into muscles to measure their electrical activity. The electrical response of the muscles tells doctors whether the nerve cells and muscles are successfully communicating. Depending on her results, steroid shots and even surgery might be required. Senapathy wants to stick with her Pixel 6, but the pain she’s experiencing may push her to buy a smaller phone. Unfortunately, options for these modestly sized phones are more limited.
These devices are now an inextricable part of our lives. So where does the burden of responsibility lie? Is it with consumers like Senapathy to adjust body positioning, get ergonomic workstations, and change habits to abate tech-related pain? Or should tech companies be held accountable for creating addictive devices that lead to musculoskeletal injury?
Kavin Senapathy, a freelance journalist, bought the Google Pixel 6 because of its high-quality camera, but she’s had to adjust how she holds the oversized phone to prevent pain flares.
Kavin Senapathy
A one-size-fits-all mentality for smartphones will continue to lead to injuries because every user has different wants and needs. S. Shyam Sundar, the founder of Penn State’s lab on media effects and a communications professor, says the needs for mobility and portability conflict with the desire for greater visibility. “The best thing a company can do is offer different sizes,” he says.
Joanna Bryson, an AI ethics expert and professor at The Hertie School of Governance in Berlin, Germany, echoed these sentiments. “A lot of the lack of choice we see comes from the fact that the markets have consolidated so much,” she says. “We want to make sure there’s sufficient diversity [of products].”
Consumers can still maintain some control despite the ubiquity of tech. Sloan, the orthopedic surgeon, has to pester her son to change his body positioning when using his tablet. Our heads get heavier as they bend forward: at rest, they weigh 12 pounds, but bent 60 degrees, they weigh 60. “I have to tell him, ‘Raise your head, son!’” she says. It’s important, Sloan explains, to consider that growth and development will affect ligaments and bones in the neck, potentially making kids even more vulnerable to injuries from misusing gadgets. She recommends that parents limit their kids’ tech time to alleviate strain. She also suggested that tech companies implement a timer to remind us to change our body positioning.
In 2017, Nan-Wei Gong, a former contractor for Google, founded Figur8, which uses wearable trackers to measure muscle function and joint movement. It’s like physical therapy with biofeedback. “Each unique injury has a different biomarker,” says Gong. “With Figur8, you are comparing yourself to yourself.” This allows an individual to self-monitor for wear and tear and strengthen an injury in a way that’s efficient and designed for their body. Gong noticed that the work-from-home model during the COVID-19 pandemic created a new set of ergonomic problems that resulted in injuries. Figur8 provides real-time data for these injuries because “behavioral change requires feedback.”
Gong worked on a project called Jacquard while at Google. Textile experts weave conductive thread into their fabric, and the result is a patch of the fabric—like the cuff of a Levi’s jacket—that responds to commands on your smartphone. One swipe can call your partner or check the weather. It was designed with cyclists in mind who can’t easily check their phones, and it’s part of a growing movement in the tech industry to deliver creative, hands-free design. Gong thinks that engineers at large corporations like Google have accessibility in mind; it’s part of what drives their decisions for new products.
Display sizes of iPhones have become larger over time.
Sourced from Screenrant https://screenrant.com/iphone-apple-release-chronological-order-smartphone/ and Apple Tech Specs: https://www.apple.com/iphone-se/specs/
Back in Germany, Joanna Bryson reminds us that products like smartphones should adhere to best practices. These rules may be especially important for phones and other products with AI that are addictive. Disclosure, accountability, and regulation are important for AI, she says. “The correct balance will keep changing. But we have responsibilities and obligations to each other.” She was on an AI Ethics Council at Google, but the committee was disbanded after only one week due to issues with one of their members.
Bryson was upset about the Council’s dissolution but has faith that other regulatory bodies will prevail. OECD.AI, and international nonprofit, has drafted policies to regulate AI, which countries can sign and implement. “As of July 2021, 46 governments have adhered to the AI principles,” their website reads.
Sundar, the media effects professor, also directs Penn State’s Center for Socially Responsible AI. He says that inclusivity is a crucial aspect of social responsibility and how devices using AI are designed. “We have to go beyond first designing technologies and then making them accessible,” he says. “Instead, we should be considering the issues potentially faced by all different kinds of users before even designing them.”
How to Live With and Love Bugs with Jessica Ware
Entomologist Jessica Ware is using new technologies to identify insect species in a changing climate. She shares her suggestions for how we can live harmoniously with creeper crawlers everywhere.
Jessica Ware is obsessed with bugs.
My guest today is a leading researcher on insects, the president of the Entomological Society of America and a curator at the American Museum of Natural History. Learn more about her here.
You may not think that insects and human health go hand-in-hand, but as Jessica makes clear, they’re closely related. A lot of people care about their health, and the health of other creatures on the planet, and the health of the planet itself, but researchers like Jessica are studying another thing we should be focusing on even more: how these seemingly separate areas are deeply entwined. (This is the theme of an upcoming event hosted by Leaps.org and the Aspen Institute.)
Listen to the Episode
Listen on Apple | Listen on Spotify | Listen on Stitcher | Listen on Amazon | Listen on Google
Entomologist Jessica Ware
D. Finnin / AMNH
Maybe it feels like a core human instinct to demonize bugs as gross. We seem to try to eradicate them in every way possible, whether that’s with poison, or getting out our blood thirst by stomping them whenever they creep and crawl into sight.
But where did our fear of bugs really come from? Jessica makes a compelling case that a lot of it is cultural, rather than in-born, and we should be following the lead of other cultures that have learned to live with and appreciate bugs.
The truth is that a healthy planet depends on insects. You may feel stung by that news if you hate bugs. Reality bites.
Jessica and I talk about whether learning to live with insects should include eating them and gene editing them so they don’t transmit viruses. She also tells me about her important research into using genomic tools to track bugs in the wild to figure out why and how we’ve lost 50 percent of the insect population since 1970 according to some estimates – bad news because the ecosystems that make up the planet heavily depend on insects. Jessica is leading the way to better understand what’s causing these declines in order to start reversing these trends to save the insects and to save ourselves.
Matt Fuchs is the editor-in-chief of Leaps.org. He is also a contributing reporter to the Washington Post and has written for the New York Times, Time Magazine, WIRED and the Washington Post Magazine, among other outlets. Follow him on Twitter @fuchswriter.