Could Biologically Enhancing Our Morality Save Our Species?

A human head pictured with a red heart in the place of a brain.

(© blacksalmon/Fotolia)

As a species, we are prone to weaponizing. There is a famous anecdote from Wulf Schievenhovel, a German anthropologist who was working in the highlands of New Guinea studying a local tribe. One day, he offered two tribesmen a flight in an airplane. They duly accepted but showed up with two large stones. When he asked why, they told him that they wanted to drop them on a neighboring village. Ethologist Frans de Waal later remarked on this story that Schievenhovel had effectively "witnessed the invention of the bomb."

Today you don't have to be Putin or Kim Jong Un to pose an existential threat.

Modern technology has given us access to more than just rocks. In 2011, a Swedish man was arrested after attempting a nuclear fission in his kitchen. And in the inaugural issue of this magazine, my colleague Hank Greely raised a terrifying prospect:

"do-it-yourself hobbyists can use CRISPR [gene editing]… to change the genomes of whole species of living things – domestic or wild; animal, vegetable, or microbial – cheaply, easily, and before we even know it is happening."

In science fiction, it is typically governments that take over technologies and use them for evil. That risk is of course no fiction. It is an ongoing problem that we have addressed through institutions: democracies, constitutions, legal systems and international treaties, and groups working together as checks and balances. It isn't perfect, but it has worked (so far).

Today you don't have to be Putin or Kim Jong Un to pose an existential threat. We are rapidly acquiring the technological ability for individuals and groups not just to cause major harm, but to do so exactly as Hank said: "cheaply, easily, and before we even know it is happening."

How should we address this problem? Together with Ingmar Persson, a fellow philosophy professor at Gothenburg, Sweden, I have argued that while education, institutions and good policing are important, we may need to think more radically.

We could adapt our biology so that we can appreciate the suffering of foreign or future people in the same instinctive way we do our friends and neighbors.

We evolved, along with the New Guinea tribesmen, to care about our small group and to be suspicious of outsiders. We evolved to cooperate well within our group, at a size where we could keep an eye on free riders. And we evolved to have the ability, and occasionally the desire to harm others, but with a natural limit on the amount of harm we could do—at least before others could step in to prevent, punish or kill us.

Our limitations have also become apparent in another form of existential threat: resource depletion. Despite our best efforts at educating, nudging, and legislating on climate change, carbon dioxide emissions in 2017 are expected to come in at the highest ever following a predicted rise of 2 percent. Why? We aren't good at cooperating in larger groups where freeriding is not easily spotted. We also deal with problems in order of urgency. A problem close by is much more significant to us than a problem in the future. That's why even if we accept there is a choice between economic recession now or natural disasters and potential famine in the future, we choose to carry on drilling for oil. And if the disasters and famine are present day, but geographically distant, we still choose to carry on drilling.

So what is our radical solution? We propose that there is a need for what we call moral bioenhancement. That is, for seeking a biological intervention that can help us overcome our evolved moral limitations. For example, adapting our biology so that we can appreciate the suffering of foreign or future people in the same instinctive way we do our friends and neighbors. Or, in the case of individuals, in addressing the problem of psychopathy from a biological perspective.

There is no reason in principle why humans could not be genetically make them kinder, happier, more conscientious, altruistic and just.

We have been dramatically successful at modifying various moral characteristics of non-human animals. Over ten thousand years or so, we have turned wolves into dogs by selective breeding, and those dogs into breeds with behavioural as well as physical characteristics: certain breeds can be faithful, hard working, good tempered and intelligent (or the opposite). Scientists have manipulated the expression of genes in prairie voles to cause them to form a mate bond more quickly, and in monkeys to make them work harder. There is no reason in principle why humans could not be genetically modified using gene editing, or their brains modified in other ways, to make them kinder, happier, more conscientious, altruistic and just.

One objection is that this is a pipe dream: even if it is acceptable to do this, it is so unlikely to be achievable, it is not worth pursuing. However, research has shown that we are already morally modified. This is widely accepted when it comes to negative effects. For example, we all know that alcohol can lead people to aggressive or other destructive behaviours that they would not have countenanced sober. In a 2008 case, a retired UK teacher was cleared of child pornography charges after he successfully argued his behaviour was caused by a drug prescribed for his Parkinson's disease. There is also evidence that we can be morally modified in a more positive direction. For example, SSRIs like Prozac, a class of drugs widely used to treat depression, have been shown to act on healthy volunteers to make them more cooperative and less critical.

Another objection is that we need the negative aspects of our human character. We need people who can fight wars. We need to be able to blot out the suffering of the wider world: to experience it as we would if it applied to our nearest and dearest would be unbearable. This might be so. If aggressiveness and denial, or strong bonding to small communities, are important traits, it is important that we understand how, and to what degree, they should be controlled. It is unlikely that nature has dished out exactly the right levels of all morally relevant characteristics on an individual or population level. We don't claim to have all the answers to what characteristics we need to enhance, and what characteristics we need to diminish. But we see no reason to believe that the status quo is the optimum.

We haven't argued that we should go blindly in now with half-baked moral enhancers, or that we should forget about moral education, or legal solutions. Evolution has a built-in response to existential threats through adaptation. But adaptation takes generations and can't deal with threats that take out a whole population. Some threats are too important —and too urgent—to be left to chance.

Julian Savulescu
Professor Julian Savulescu has held the Uehiro Chair in Practical Ethics at the University of Oxford since 2002. He has degrees in medicine, neuroscience and bioethics. He directs the Oxford Uehiro Centre for Practical Ethics within the Faculty of Philosophy, and co-directs the interdisciplinary Wellcome Centre for Ethics and Humanities in collaboration with Public Health, Psychiatry and History. In 2017, he joined the Murdoch Children’s Research Institute, spending four months per year as Visiting Professorial Fellow in Biomedical Ethics where he is working to establish a program in biomedical ethics, and Melbourne University as Distinguished International Visiting Professor in Law. He is Editor of the Journal of Medical Ethics and received an honorary doctorate from the University of Bucharest in 2014. (Photo credit: Murray Bransgrove)
Get our top stories twice a month
Follow us on
Photo by the National Cancer Institute on Unsplash

In November 2020, messenger RNA catapulted into the public consciousness when the first COVID-19 vaccines were authorized for emergency use. Around the same time, an equally groundbreaking yet relatively unheralded application of mRNA technology was taking place at a London hospital.

Over the past two decades, there's been increasing interest in harnessing mRNA — molecules present in all of our cells that act like digital tape recorders, copying instructions from DNA in the cell nucleus and carrying them to the protein-making structures — to create a whole new class of therapeutics.

Keep Reading Keep Reading
David Cox
David Cox is a science and health writer based in the UK. He has a PhD in neuroscience from the University of Cambridge and has written for newspapers and broadcasters worldwide including BBC News, New York Times, and The Guardian. You can follow him on Twitter @DrDavidACox.
Virus image by Fusion Medical Animation on Unsplash

"Making Sense of Science" is a monthly podcast that features interviews with leading medical and scientific experts about the latest developments and the big ethical and societal questions they raise. This episode is hosted by science and biotech journalist Emily Mullin, summer editor of the award-winning science outlet

Hear the episode:

Emily Mullin
Emily Mullin is the summer editor of Most recently, she was a staff writer covering biotech at OneZero, Medium's tech and science publication. Before that, she was the associate editor for biomedicine at MIT Technology Review. Her stories on science and medicine have also appeared in The Washington Post, New York Times, Wall Street Journal, Scientific American, National Geographic and STAT.