An Environmental Scientist and an Educator Highlight Navajo Efforts to Balance Tradition with Scientific Priorities

Navajo Nation's Monument Valley Park, Arizona.
This article is part of the magazine, "The Future of Science In America: The Election Issue," co-published by LeapsMag, the Aspen Institute Science & Society Program, and GOOD.
The global pandemic has made it impossible to ignore the stark disparities that exist within American communities. In the past months, journalists and public health experts have reminded us how longstanding systemic health and social inequities have put many people from racial and ethnic minority groups at increased risk of getting sick and dying from COVID-19. Still, the national dialogue noticeably lacks a general awareness of Indigenous people's needs and priorities, especially in the scientific realm.
To learn more about some of the issues facing often-overlooked Indigenous tribal communities, we sought the perspectives of two members of the Navajo Nation: Nonabah Lane, Director of Development of New Mexico Projects at Navajo Power and the founder of Navajo Ethno-Agriculture, a farm that teaches Navajo culture through traditional farming and bilingual education; and Elmer Guy, Ph.D., president of Navajo Technical University, the first university to be established forty years ago on the Navajo Nation that today stands as a premier institution of higher education focusing on a balance between science and technology and traditional culture.
Elmer Guy and Nonabah Lane.
Credits: Navajo Technical University, left, and Diana Levine
Nonabah Lane: The COVID pandemic is really highlighting a lot of ways in which we are lacking, and that's especially true here in our tribal community, because the first thing you need to even address where we are in this science and technology space is the internet. There's a considerable gap between the haves and the have-nots in terms of internet. The Navajo Nation is roughly the size of West Virginia, but we don't have anywhere near the broadband and internet access that other "states" this size would have. Some of the more glaring reasons for this go back to historical policies, lack of funding for infrastructure on tribal lands, and current rights-of-way issues, and a lot of it has to do with the fact that larger corporations aren't as willing to take risks in doing business on a tribal trust land. When you don't have the internet, you don't have access to information, you don't have access to what is going on in the world or science or technology, and you can't keep up with work or school.
Dr. Elmer Guy: That's right. In this pandemic, as we're being forced to go online, I see school buses parked outside for students who don't have internet at home. The buses are equipped with Wi-Fi, so if students can find a way to get to where those buses are parked, they can get on and do their homework. But only then.
Internet has long been an issue, and the Navajo Nation's telecommunications department created a cyber task force that we at Navajo Technical University (NTU) are members of. One of the things we recently did was to petition the FCC for special temporary authority of an EBS [Educational Broadband Services] 2.5-GHz spectrum that was available but not being used. So now we have that and we're using it to set up hot spots for students to connect. We're also working with the four internet-service companies: Cellular One, Navajo Tribal Utility Authority, Sacred Wind, and Frontier. As Nonabah was saying, the Navajo Nation is quite large and has five agencies. NTU is in the eastern agency, but Navajo Tribal Utility Authority doesn't have a footprint here, so we partnered with Sacred Wind as well as Frontier to broaden our bandwidth.
We've also been collaborating with the Navajo Cyber Team on developing a Navajo Nation broadband policy, and we're almost done with that. The Navajo Nation received some CARES [Coronavirus Aid, Relief, and Economic Security] funding, and part of that is being used to address broadband. One of the things we're trying to do is see if tribal colleges can qualify for E-Rates [educational rates], since schools are eligible for E-Rates. And so some of the schools are getting connected.
What's also happening is that the Navajo Nation is trying to expand water lines to families so that they have water to wash their hands during this pandemic. We're recommending that if they're going to dig for the water lines, they might as well lay down conduits, too, so that later we will be able to install fiber as well. We happen to specialize in wireless technology here at NTU, and that is making a significant impact. In the past, it used to be about point-to-point, and when you're trying to serve a community in the valley, you'd have to find a water tank or something high and then get down and into that community from there. But with newer technology, they can bend now into those valleys. We keep reminding the state that they need to address rural communities. We've reached out to congressional members to push them to address broadband issues with Indian communities, and there are a couple of bills out now addressing that.
Of course, there are other things we're looking at in terms of scientific priorities: artificial intelligence, robotics, and climate change. We're in a high-desert environment, and the sand dunes are increasing because of overgrazing and other factors. Water sources are limited, and air pollution doesn't really help, so robotics could be promising. For example, we're looking at the water-filtering systems for wells so that both animals and humans have access to safe water. We're beginning to see the reach of technology in places like grocery stores, where people can check themselves out without the need for cashiers. So we try to look ahead and project what kinds of jobs will and will not be needed on the Navajo Nation, then have our faculty think about ways of adjusting the curriculum to stay in line with where the world is headed.
"One of the biggest challenges for us is how we make sure there's a connection between the students who want to go into science and how they can continue to contribute to Navajo communities—to their parents' and grandparents' way of life."
NL: Since we're talking about the internet and A.I., I think one of the key issues that isn't addressed in tribal communities is data: data security, privacy, and, ultimately, ownership. It's such a gray area. Take this pandemic, for instance, and the numbers and the data that's being collected: who's taking all of this information out of our communities and who's accounting for it? It's an important component being extracted seemingly covertly. Our tribal communities don't necessarily understand how valuable it is to keep that data within our communities.
I know there are various data holders who are not Navajo who have studied Navajo people and our environment, from soil samples to diabetes rates, and it's just not information we fully have access to as a population—our own information. It's critical to get everyone on the same page and to understand the importance of that.
There's a water project I'm working on that came out of the Gold King Mine waste-water spill of 2015, which was a major environmental catastrophe in New Mexico that affected the run-off from the San Juan Mountains. The water contamination really hurt agriculture, especially Navajo farmers on the San Juan River. We still feel it, even if the pandemic has kind of overshadowed it, and before the pandemic, my organization, Navajo Ethno-Agriculture, adopted a lot of the hard-science data that was taken by the University of Arizona. We've been working with New Mexico State University in continuing to collect and share data with the community in order to build back confidence with Navajo consumers about our farm produce. We have an ongoing partnership with New Mexico State University where they come out and do soil testing, and Navajo Preparatory School students are developing a curriculum around this as well. The point is to get easy-to-use, low-cost technology so that farmers can do this testing on their own and not have to wait for and rely on a university or the government agencies to come out and test it. This initiative would not have been possible without the support of the MIT Solve Indigenous Communities Fellowship.
Of course, you're always going to have the people in the community who don't believe in science and don't believe that the water is, in fact, okay, but it's essential that we have that scientific data. It's about empowering farmers to be able to relay that message as well—and finding a bridge between our longstanding traditions and modern science. A lot of the farming among the Navajo is deeply traditional to this region, and, as a culture, we're focused on the traditional aspects of the food. That's really why we felt like it was important to be proactive about this—because if you lose one more generation of farmers who don't produce these heritage foods, it's not just your food, it's your whole culture and way of life—your heritage—that could be gone. So it's important to preserve that tradition, but also alongside Western science—and data is critical.
EG: Nonabah is right about tradition, and I think one of the biggest challenges for us is how we make sure there's a connection between the students who want to go into science and how they can continue to contribute to Navajo communities—to their parents' and grandparents' way of life. A lot of the time, you have to create those opportunities. For example, we're trying to develop an environmental laboratory at one of our sites in Chinle, Arizona, where we want to be able to test the water, soil, air, uranium, etc. We have people who can run that facility mainly to help with the uranium mine clean-up. There are over 500 abandoned uranium mines, and what might usually happen is that funds would become available and outside entities would get those grants and they'd come in and do the work. Then, as soon as the grant is up, they leave and everything disappears, but the problem remains. It's these kinds of situations where we say, Why can't we do that ourselves? And the only way is to train and prepare engineers ourselves, from our community.
A lot of our students intern with the U.S. Army and Air Force Research Labs Faculty Fellowship or with Boeing or NASA, and, when they graduate, those groups grab them for themselves. So I keep asking the Navajo Nation where they are in all of this. A lot of times we are the ones who create the barriers that only end up hurting us. When the Navajo Nation puts out job vacancies, they require candidates to have so many years of experience, and our students don't qualify. There is a tremendous need for our graduates, but everybody except the Navajo Nation ends up hiring them.
NL: As Dr. Guy says, creating opportunity is so important. My family's non-profit organization, Navajo Ethno-Agriculture, actually came about for that particular reason. We had people coming in and doing workshops and telling us how we should plant and do this or that. It was absurd—how can you come from Washington State and tell us how to plant when you don't know what native crops have been planted in our home region for centuries? And so, because of my family's background in the sciences and the traditional upbringing we all share, we built this program ourselves. We incorporate the science into our program, and we encourage students to pursue a career in science, while trying to create those job opportunities for them here. I find that more than 75% of the Navajo students I interact with—whether in high school or college—want to come back home. They just don't have the work or career opportunities to do so.
EG: NTU also has a partnership with the Navajo Nation's economic department, and we run their business incubator program. We encourage people to go into businesses here on Navajo. One of the challenges is that, even though the Navajo Nation may be the size of West Virginia, we don't own the land. So you have to deal with leases or homesite land-use permits, and it's daunting. We streamline that process and help people put together business plans, set up payroll taxes, figure out marketing strategies, and so forth.
One of the challenges is resistance, and that's something you have to deal with. For example, when I was pushing my faculty to develop an engineering degree, no one could understand why. So I told them about the national goal—that the United States has set a goal for itself that by the year 2026 or whenever, it wants to have 100,000 engineers. But what about the Navajo Nation's goals? We don't have a goal, but we should, and you have to push people to get there. Eventually everyone sees the benefits of these kinds of decisions.
NL: I also believe we have to encourage the entrepreneurial mindset: If something doesn't exist here already, then ask yourself what's needed and create it. This is our community, and we can make that change. I'm really biased toward starting your own thing because that's what I do. Before COVID-19 hit, I was developing a water lab that would stand closer to the Southern Ute Reservation so that it could be at the opening to the tributaries that run into the Colorado River and downstream to the tribes. I wanted that specific site because it would allow us to monitor the water that's a priority for tribes—because everyone else already has their own resources. And all of the water scientists involved were Navajo. If people like us don't take the initiative for these kinds of projects, the absolute wrong person is going to do it, without understanding the community.
EG: Whether it's the environment or water or some other scientific need, it's important that we remember to develop the smaller steps necessary for achieving any goal. For example, if we need veterinarians, then we have to ask what the steps are to get us to that point. A veterinary or medical school probably won't happen at NTU, but we could begin by identifying and building the steps needed to get there. We did this by starting a veterinary technician program and then added an animal science degree and then a biology degree, which is designed somewhat as a pre-medical degree, so that students can go into either medicine or veterinary science. We know we can't always make a leap right away, but we can build the pathways that get us there.
NL: For everything we've been discussing, I think it's really important to understand that we're not talking for the whole of the Navajo Nation; the Navajo Nation is large, and its culture is regional. There are different priorities in different communities. Where I live, we have abundant water around us, so that is not a need, but if you go 100 miles south, there's no water infrastructure whatsoever. And there are other issues, from coal and oil and gas extraction, to the uranium issue, which are regional. Some people live close to large health facilities while rural communities only have access to a clinic. NTU is resource-abundant in terms of having that academic outlet for students while people on the other side of the reservation may not have that. I'm always very clear about this. I may be speaking from a tribal nation, I may be speaking from experience, but I'm not speaking for the Navajo Nation as a whole, and I'm not speaking for tribal communities as a whole. Yes, we are a community, and we can expose a greater picture in our area of expertise, but there are definitely different areas that have individual needs.
Still, I do believe in the promise of what the future can hold for us in terms of both science and tradition. The two can complement each other and are not at odds, even though we tend to think of sustainability in scientific terms. And yes, science can help us achieve sustainability through things like solar tech, health innovations, and natural sciences. But I'm talking about sustainability overall and of the Earth: sustainability of water, energy, and agriculture, but also of human capacity and Navajo culture.
[Editor's Note: To read other articles in this special magazine issue, visit the beautifully designed e-reader version.]
Meet Dr. Renee Wegrzyn, the first Director of President Biden's new health agency, ARPA-H
Today's podcast guest, Dr. Renee Wegrzyn, directs ARPA-H, a new agency formed last year to spearhead innovations in the realm of health. Time will tell if ARPA-H can produce achievements similar to DARPA, the agency on which it's based.
In today’s podcast episode, I talk with Renee Wegrzyn, appointed by President Biden as the first director of a federal agency created last year called the Advanced Research Projects Agency for Health, or ARPA-H. It’s inspired by DARPA, the agency that develops innovations for the Defense department and has been credited with hatching world changing technologies such as ARPANET, which became the internet.
Time will tell if ARPA-H will lead to similar achievements in the realm of health. That’s what President Biden and Congress expect in return for funding ARPA-H at 2.5 billion dollars over three years.
Listen on Apple | Listen on Spotify | Listen on Stitcher | Listen on Amazon | Listen on Google
How will the agency figure out which projects to take on, especially with so many patient advocates for different diseases demanding moonshot funding for rapid progress.
I talked with Dr. Wegrzyn about the opportunities and challenges, what lessons ARPA-H is borrowing from Operation Warp Speed, how she decided on the first ARPA-H project which was just announced recently, why a separate agency was needed instead of trying to reform HHS and the National Institutes of Health to be better at innovation, and how ARPA-H will make progress on disease prevention in addition to treatments for cancer, Alzheimer’s and diabetes, among many other health priorities.
Dr. Wegrzyn’s resume is filled with experience for her important role. She was a program manager at DARPA where she focused on applying gene editing and synthetic biology to the goal of improving biosecurity. For her work there, she was given the Superior Public Service Medal and, just in case that wasn’t enough ARPA experience, she also worked at another ARPA that leads advanced projects in intelligence, called I-ARPA. Before that, she was in charge of technical teams in the private sector working on gene therapies and disease diagnostics, among other areas. She has been a vice president of business development at Gingko Bioworks and headed innovation at Concentric by Gingko. Her training and education includes a PhD and undergraduate degree in applied biology from the Georgia Institute of Technology and she did her postdoc as an Alexander von Humboldt Fellow in Heidelberg, Germany.
As Dr. Wegrzyn told me, she’s “in the hot seat” - the pressure is on for ARPA-H especially after the need and potential for health innovation was spot lit by the pandemic and the unprecedented speed of vaccine development. We'll soon find out if ARPA-H can produce something in health that’s equivalent to DARPA’s creation of the internet.
Show links:
ARPA-H - https://arpa-h.gov/
Dr. Wegrzyn profile - https://arpa-h.gov/people/renee-wegrzyn/
Dr. Wegrzyn Twitter - https://twitter.com/rwegrzyn?lang=en
President Biden Announces Dr. Wegrzyn's appointment - https://www.whitehouse.gov/briefing-room/statement...
Leaps.org coverage of ARPA-H - https://leaps.org/arpa/
ARPA-H program for joints to heal themselves - https://arpa-h.gov/news/nitro/ -
ARPA-H virtual talent search - https://arpa-h.gov/news/aco-talent-search/
Matt Fuchs is the editor-in-chief of Leaps.org and Making Sense of Science. He is also a contributing reporter to the Washington Post and has written for the New York Times, Time Magazine, WIRED and the Washington Post Magazine, among other outlets. Follow him @fuchswriter.
Tiny, tough “water bears” may help bring new vaccines and medicines to sub-Saharan Africa
Tardigrades can completely dehydrate and later rehydrate themselves, a survival trick that scientists are harnessing to preserve medicines in hot temperatures.
Microscopic tardigrades, widely considered to be some of the toughest animals on earth, can survive for decades without oxygen or water and are thought to have lived through a crash-landing on the moon. Also known as water bears, they survive by fully dehydrating and later rehydrating themselves – a feat only a few animals can accomplish. Now scientists are harnessing tardigrades’ talents to make medicines that can be dried and stored at ambient temperatures and later rehydrated for use—instead of being kept refrigerated or frozen.
Many biologics—pharmaceutical products made by using living cells or synthesized from biological sources—require refrigeration, which isn’t always available in many remote locales or places with unreliable electricity. These products include mRNA and other vaccines, monoclonal antibodies and immuno-therapies for cancer, rheumatoid arthritis and other conditions. Cooling is also needed for medicines for blood clotting disorders like hemophilia and for trauma patients.
Formulating biologics to withstand drying and hot temperatures has been the holy grail for pharmaceutical researchers for decades. It’s a hard feat to manage. “Biologic pharmaceuticals are highly efficacious, but many are inherently unstable,” says Thomas Boothby, assistant professor of molecular biology at University of Wyoming. Therefore, during storage and shipping, they must be refrigerated at 2 to 8 degrees Celsius (35 to 46 degrees Fahrenheit). Some must be frozen, typically at -20 degrees Celsius, but sometimes as low -90 degrees Celsius as was the case with the Pfizer Covid vaccine.
For Covid, fewer than 73 percent of the global population received even one dose. The need for refrigerated or frozen handling was partially to blame.
The costly cold chain
The logistics network that ensures those temperature requirements are met from production to administration is called the cold chain. This cold chain network is often unreliable or entirely lacking in remote, rural areas in developing nations that have malfunctioning electrical grids. “Almost all routine vaccines require a cold chain,” says Christopher Fox, senior vice president of formulations at the Access to Advanced Health Institute. But when the power goes out, so does refrigeration, putting refrigerated or frozen medical products at risk. Consequently, the mRNA vaccines developed for Covid-19 and other conditions, as well as more traditional vaccines for cholera, tetanus and other diseases, often can’t be delivered to the most remote parts of the world.
To understand the scope of the challenge, consider this: In the U.S., more than 984 million doses of Covid-19 vaccine have been distributed so far. Each one needed refrigeration that, even in the U.S., proved challenging. Now extrapolate to all vaccines and the entire world. For Covid, fewer than 73 percent of the global population received even one dose. The need for refrigerated or frozen handling was partially to blame.
Globally, the cold chain packaging market is valued at over $15 billion and is expected to exceed $60 billion by 2033.
Adobe Stock
Freeze-drying, also called lyophilization, which is common for many vaccines, isn’t always an option. Many freeze-dried vaccines still need refrigeration, and even medicines approved for storage at ambient temperatures break down in the heat of sub-Saharan Africa. “Even in a freeze-dried state, biologics often will undergo partial rehydration and dehydration, which can be extremely damaging,” Boothby explains.
The cold chain is also very expensive to maintain. The global pharmaceutical cold chain packaging market is valued at more than $15 billion, and is expected to exceed $60 billion by 2033, according to a report by Future Market Insights. This cost is only expected to grow. According to the consulting company Accenture, the number of medicines that require the cold chain are expected to grow by 48 percent, compared to only 21 percent for non-cold-chain therapies.
Tardigrades to the rescue
Tardigrades are only about a millimeter long – with four legs and claws, and they lumber around like bears, thus their nickname – but could provide a big solution. “Tardigrades are unique in the animal kingdom, in that they’re able to survive a vast array of environmental insults,” says Boothby, the Wyoming professor. “They can be dried out, frozen, heated past the boiling point of water and irradiated at levels that are thousands of times more than you or I could survive.” So, his team is gradually unlocking tardigrades’ survival secrets and applying them to biologic pharmaceuticals to make them withstand both extreme heat and desiccation without losing efficacy.
Boothby’s team is focusing on blood clotting factor VIII, which, as the name implies, causes blood to clot. Currently, Boothby is concentrating on the so-called cytoplasmic abundant heat soluble (CAHS) protein family, which is found only in tardigrades, protecting them when they dry out. “We showed we can desiccate a biologic (blood clotting factor VIII, a key clotting component) in the presence of tardigrade proteins,” he says—without losing any of its effectiveness.
The researchers mixed the tardigrade protein with the blood clotting factor and then dried and rehydrated that substance six times without damaging the latter. This suggests that biologics protected with tardigrade proteins can withstand real-world fluctuations in humidity.
Furthermore, Boothby’s team found that when the blood clotting factor was dried and stabilized with tardigrade proteins, it retained its efficacy at temperatures as high as 95 degrees Celsius. That’s over 200 degrees Fahrenheit, much hotter than the 58 degrees Celsius that the World Meteorological Organization lists as the hottest recorded air temperature on earth. In contrast, without the protein, the blood clotting factor degraded significantly. The team published their findings in the journal Nature in March.
Although tardigrades rarely live more than 2.5 years, they have survived in a desiccated state for up to two decades, according to Animal Diversity Web. This suggests that tardigrades’ CAHS protein can protect biologic pharmaceuticals nearly indefinitely without refrigeration or freezing, which makes it significantly easier to deliver them in locations where refrigeration is unreliable or doesn’t exist.
The tricks of the tardigrades
Besides the CAHS proteins, tardigrades rely on a type of sugar called trehalose and some other protectants. So, rather than drying up, their cells solidify into rigid, glass-like structures. As that happens, viscosity between cells increases, thereby slowing their biological functions so much that they all but stop.
Now Boothby is combining CAHS D, one of the proteins in the CAHS family, with trehalose. He found that CAHS D and trehalose each protected proteins through repeated drying and rehydrating cycles. They also work synergistically, which means that together they might stabilize biologics under a variety of dry storage conditions.
“We’re finding the protective effect is not just additive but actually is synergistic,” he says. “We’re keen to see if something like that also holds true with different protein combinations.” If so, combinations could possibly protect against a variety of conditions.
Commercialization outlook
Before any stabilization technology for biologics can be commercialized, it first must be approved by the appropriate regulators. In the U.S., that’s the U.S. Food and Drug Administration. Developing a new formulation would require clinical testing and vast numbers of participants. So existing vaccines and biologics likely won’t be re-formulated for dry storage. “Many were developed decades ago,” says Fox. “They‘re not going to be reformulated into thermo-stable vaccines overnight,” if ever, he predicts.
Extending stability outside the cold chain, even for a few days, can have profound health, environmental and economic benefits.
Instead, this technology is most likely to be used for the new products and formulations that are just being created. New and improved vaccines will be the first to benefit. Good candidates include the plethora of mRNA vaccines, as well as biologic pharmaceuticals for neglected diseases that affect parts of the world where reliable cold chain is difficult to maintain, Boothby says. Some examples include new, more effective vaccines for malaria and for pathogenic Escherichia coli, which causes diarrhea.
Tallying up the benefits
Extending stability outside the cold chain, even for a few days, can have profound health, environmental and economic benefits. For instance, MenAfriVac, a meningitis vaccine (without tardigrade proteins) developed for sub-Saharan Africa, can be stored at up to 40 degrees Celsius for four days before administration. “If you have a few days where you don’t need to maintain the cold chain, it’s easier to transport vaccines to remote areas,” Fox says, where refrigeration does not exist or is not reliable.
Better health is an obvious benefit. MenAfriVac reduced suspected meningitis cases by 57 percent in the overall population and more than 99 percent among vaccinated individuals.
Lower healthcare costs are another benefit. One study done in Togo found that the cold chain-related costs increased the per dose vaccine price up to 11-fold. The ability to ship the vaccines using the usual cold chain, but transporting them at ambient temperatures for the final few days cut the cost in half.
There are environmental benefits, too, such as reducing fuel consumption and greenhouse gas emissions. Cold chain transports consume 20 percent more fuel than non-cold chain shipping, due to refrigeration equipment, according to the International Trade Administration.
A study by researchers at Johns Hopkins University compared the greenhouse gas emissions of the new, oral Vaxart COVID-19 vaccine (which doesn’t require refrigeration) with four intramuscular vaccines (which require refrigeration or freezing). While the Vaxart vaccine is still in clinical trials, the study found that “up to 82.25 million kilograms of CO2 could be averted by using oral vaccines in the U.S. alone.” That is akin to taking 17,700 vehicles out of service for one year.
Although tardigrades’ protective proteins won’t be a component of biologic pharmaceutics for several years, scientists are proving that this approach is viable. They are hopeful that a day will come when vaccines and biologics can be delivered anywhere in the world without needing refrigerators or freezers en route.